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Abstract: Photonic neural networks perform ultrafast inference operations but are trained on slow 
computers. We highlight on-chip network training enabled by silicon photonics. We introduce 
quantum photonic neural networks and discuss the role of weak nonlinearities.  

Artificial intelligence (AI) powered by neural networks has enabled applications in many fields (medicine, finance, 
autonomous vehicles). Digital implementations of neural networks are limited in speed and energy efficiency. 
Neuromorphic photonics [1] aims to build processors that use light and photonic device physics to mimic neurons and 
synapses in the brain for distributed and parallel processing while offering sub-nanosecond latencies and extending 
the domain of AI and neuromorphic computing applications [2,3]. However, to date, most neuromorphic photonic 
processors are trained offline (to determine the synaptic weights and neuron biases) and only used for inference tasks 
that do not require synaptic weights to be updated, such as in machine acceleration (e.g., by performing fast matrix-
vector multiplications) [4-8], nonlinear programming [9,10], intelligent signal processing [11,12], etc. The training 
algorithms, such as backpropagation [13], have high computation and memory costs that challenge the current 
hardware platforms executing them [14]. The substantial energy required to train large neural networks using standard 
von Neumann architectures presents a high financial and environmental cost [15]. Training large neural networks is 
an area of machine learning that would benefit from photonics’ low power consumption and high information 
processing bandwidth.  

We will discuss our recent work [16] on-chip training of photonic neural networks using the direct feedback 
alignment (DFA) training algorithm, which trains neural networks using error feedback rather than error 
backpropagation and can operate at speeds of trillions of multiply-accumulate (MAC) operations per second while 
consuming less than one picojoule per MAC operation. The photonic architecture exploits parallelized matrix-vector 
multiplications using arrays of microring resonators for processing multi-channel analog signals along single 
waveguide buses to calculate the gradient vector for each neural network layer in situ.  

We will also briefly introduce quantum photonic neural networks (QPNNs) [17]. QPNNs are brain-inspired, 
reconfigurable quantum circuits that leverage the strengths of photonic platforms (for multiplexing, low latency, and 
low powers) and can be trained to implement high-fidelity quantum operations. We will discuss realistic QPNNs that 
suffer weak nonlinearities and fabrication imperfections leading to photon loss. We show that QPNNs can learn to 
overcome these errors and that an optimal network size balances imperfections versus the ability to compensate for 
lacking nonlinearities. With a sub-optimal nonlinearity, we show high unconditional fidelity (e.g., 0.891 for a Bell-
state analyzer) and a near-perfect fidelity if it is possible to precondition success on detecting a photon in each logical 
photonic qubit.  
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