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Abstract—Photonic neural networks have unique weight-
actuating mechanisms and manufacturing variations, resulting in 
a suboptimal performance by conventional offline training. By 
incorporating a power-pruning regularization term in the loss 
function, we demonstrate an online training method that can 
overcome manufacturing errors and minimize power 
consumption. 
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I. INTRODUCTION

Photonic neural networks (PNNs) [1] offer superior speed 
and energy efficiency for computing tasks but are challenging to 
train accurately. Like human brains, no two PNNs are identical 
due to manufacturing variations. This leads to errors that 
accumulate within layers, even if designed to be the same. 
Although chip design optimization has improved error tolerance 
and robustness [2], it could be more effective. Online training, 
which iterates trainable parameters while monitoring actual 
PNN output, offers a more straightforward way to compensate 
for errors. Gradient-based [3] and gradient-free [4] algorithms 
have been used for online training, with the latter showing better 
error immunity. Furthermore, previous training models have 
overlooked a physical peculiarity of PNNs that the power 
consumption can differ with executed weights. The on-chip 
weighting actuators, including microring (MRR) and Mach-
Zehnder interferometer (MZI), require different amounts of 
current (or voltages) for setting different weights. Therefore, 
optimizing the trade-off between applied current and network 

performance can help result in reduced power consumption, 
similar to" pruning" in digital electrical neural networks [5]. 

Here, we propose a training approach for PNNs that 
effectively addresses manufacturing errors and optimizes power 
consumption. Specifically, we demonstrate a gradient-free 
online training method based on particle swarm optimization 
(PSO) [6]. Moreover, we implement pruning for PNNs by 
incorporating an additional regularization term into the loss 
function to account for power consumption. We evaluate the 
proposed method through experiments on a 2x2 PNN and a 
simulation on a larger PNN with three layers and 804 random 
MRRs. Results indicate a one-third reduction in power 
consumption while maintaining high prediction accuracy. 

II. RESULTS

As a gradient-free training algorithm, PSO treats a potential 
solution of trainable parameters as a particle. In each iteration, a 
population of particles is tested on a PNN. The outcome is 
evaluated using a loss function, and PSO adjusts each particle 
based on its reward and that of its neighbors. The particles are 
randomly placed within the search space, bounded by the 
applicable current or voltages, until they converge. The velocity 
of each particle is calculated using empirically selected 
weighting factors, cognitive and social factors, and random 
factors. The cognitive factor reflects the particle's best position, 
while the social factor represents the best position found by the 
entire swarm. Random factors add exploration to the search.

Fig. 1. (a) Photo and (b) schematic of the experimental setup. PIC, photonic integrated circuit. BPD, balanced photodetector. MUX, wavelength multiplexer. ADC, 
analog-to-digital converter. (c) Weight tuning curves of MRRs. MRR1 and MRR3 have the same diameter of 22.29 μm, and that of MRR2 and MRR4 are 22.32 
μm. Vertical lines represent tuning current obtained by online training. Smaller currents are used by the pruning method, reducing power from 10.4 mW to 6.7 mW. 
(d) and (e) Confusion matrix for the 50 test samples resulting from offline and online training, respectively.
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The loss function comprises cross-entropy (CE) and a 
power-related regularization term, as 𝑓𝑓loss = CE + 𝜆𝜆Σ𝑖𝑖 𝐼𝐼𝑖𝑖

2 . 
The CE is determined by the probability of each output item 
generated by a softmax function, which translates as the 
prediction accuracy of the PNNs. As we focus on MRR-based 
PNNs in this paper, the additional regularization term is a 
coefficient 𝜆𝜆 times the sum of the square of the applied current 
(in mA). This term is proportional to the total tuning power 
since the power consumed by the 𝑖𝑖th MRR is given by 𝐼𝐼𝑖𝑖

2 × 𝑅𝑅, 
where 𝑅𝑅  is the resistance of the heater. By minimizing the 
output of this loss function, the training algorithm considers 
both prediction and power performance, finding the optimal 
trade-off affected by the empirically determined 𝜆𝜆. 

We experimentally test the proposed training method on a 
classification task of two iris flower types using a modified 
iris dataset with only petal width and length features. The task 
is fitted into a 2x2 PNN with six trainable parameters: the 
weights of four MRRs, 𝑤𝑤11, 𝑤𝑤12, 𝑤𝑤21, 𝑤𝑤22, and two biases, 𝑏𝑏1 
and 𝑏𝑏2. We randomly select 100 samples for training and 50 
samples for testing. We modulate values of the petal widths 
and lengths onto laser 1 and 2, respectively, and combine the 
two laser lights before splitting them equally into two MRR 
weight banks. An FPGA analyzes the weighted addition 
output by built-in ADCs and then updates the tuning current 
by programming the MRR driver. The PSO algorithm is 
carried out via Python-coded software. The actual weights of 
all four MRRs against tuning currents (Fig. 1c) illustrate the 
misalignment of resonance frequencies between MRRs of the 
same diameters due to manufacturing variations. We train the 
same PNN under three conditions: offline, online with a 
regular loss function, and online with a power-pruning loss 
function. All three training results converge at 100% accuracy 
for the training samples. However, offline-trained PNN shows 
errors on the test samples due to incorrectly executed weights. 
In contrast, online-trained PNNs maintain error-free 
prediction, and the pruning results show a one-third reduction 
in power consumption. 

Furthermore, we extend our evaluation to simulate a larger 
PNN that classifies images of handwritten digits ranging from 
0 to 9. The PNN architecture comprises three layers with 1510 
trainable parameters that include 1480 MRR currents and 30 
biases. To simulate weight tuning curves for each MRR, we 
vary their resonance frequencies in a Gaussian distribution 
while maintaining the same transmission width, as illustrated 
in Fig. 2b. We compare the same three training methods as in 
the previous experiment and observe a lower prediction 
accuracy of 76% for the offline training. In contrast, online-
trained models produce accuracies of higher than 93%. 
Notably, smaller tuning currents are used when applying the 
pruning loss function, resulting in a significant reduction in 
power consumption from 5W to 3W, while maintaining a high 
accuracy of 90%. These observations emphasize the 
importance of online training and power pruning as PNNs 
scale up and highlight the potential of our proposed method 
for future studies involving an increasing number of photonic 
neurons. 

Fig. 2. Simulation on MNIST dataset. (a) PNN architecture has one hidden 
layer with 20 nodes fully connected to the input and output layers. (b) Weight 
tuning curves and trained current of all the 1480 MRRs. With pruning, the 
actuated tuning currents, shown as deep green triangles, are smaller than the 
non-pruning case, shown as light green dots. (c)-(e) Confusion matrice 
resulted from three training methods. 

III. CONCLUSION

In conclusion, our proposed online training mechanism for 
PNNs enables the self-correction of manufacturing errors and 
minimizes inference power budgets. This approach can be 
extended to a more efficient learning process, where offline 
learning provides a starting point for PNNs, and individual 
PNNs further optimize their parameters through online 
learning. This methodology allows for transferable 
knowledge, such as weights obtained through offline learning, 
and non-transferable knowledge resulting from self-
adaptations. We anticipate further investigation of exploiting 
the co-packaged FPGAs for real-time learning rates, resulting 
in greater versatility and adaptiveness. Our online training 
demonstration will serve as a methodology foundation for 
future PNN studies, enhancing their ability to address real-
world tasks. 
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