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Abstract—Research in photonic information processing has
experienced a recent resurgence. Microring weight banks enable
reconfigurable neural network approaches on silicon photonics.
We discuss the latest results in neuromorphic silicon photonic
networks and microring weight banks.

As compared to electronics, optics lacks key physical re-
quirements for implementing digital logic; however, these
same physical qualities make it superior at analog signal
processing. For example, radio frequency (RF) and microwave
photonics (MWP) exploit the bandwidth, linearity, and tun-
ability of optics to address next-generation wireless system
needs [1], but their processing repertoire is usually constrained
to single-input linear operations. Extending this performance
to much more complex tasks would require scalable models
and photonic implementations of network-based information
processing. Optical neural networks have been explored using
free-space optics, but were effectively considered untenable
about two decades ago because they were large, expensive,
sub-GHz, and severely limited in scalability.

Neuromorphic photonics [2] aims to map physical models of
optoelectronic systems to abstract models of neural networks.
Today, rapid advances in photonic manufacturing could revo-
lutionize large-scale photonic systems in terms of size, cost,
device performance, reliability, and scalability. The processing
repertoire of single neurons is relatively simple while that of
overall neural networks can be incredibly complex and varied.
Network connection strengths (a.k.a. weights) are closely
tied to computational function, not just data communication.
Neural networks owe their name to biology, but are in fact
a class of well-studied mathematical models. This extensive
knowledge of how to relate weight profiles to function can be
leveraged by hardware that can be made isomorphic to a neural
network framework – neuromorphic systems. Neuromorphic
electronic architectures utilizing this strategy have recently
attracted tremendous research interest [3]. Here, we discuss
recent advances in integrated neuromorphic photonics and
silicon photonic weight banks.

Interest in integrated lasers with neuron-like spiking behav-
ior has flourished over the past several years [4]. These lasers
exhibit excitable (a.k.a spiking) dynamics where the outputs
are pulses of fixed amplitude and continuous in time. The
differential equations describing a laser cavity with embedded
saturable absorber can be designed to map exactly to those of
a common neuron model called leaky integrate-and-fire [5],
except on timescales roughly 107× faster than their biological
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Fig. 1. Silicon Photonic Neural Networks. a) Broadcast-and-weight archi-
tecture. b) Demonstrated broadcast-and-weight network based on microring
weight banks. c) Observed oscillatory bifurcation in the experiment in (b).

counterparts. Experimental work on excitable lasers has so
far focused on isolated neurons [6] and fixed, cascadable
chains [7], [8]. The shortage of research on networks of these
lasers might be explained by the challenges of implementing
low-loss, compact, and tunable filters in the active III/V
platforms required for laser gain.

The “broadcast-and-weight” architecture (Fig. 1a) was pro-
posed as a protocol for implementing networks of photonic
neurons using integrated photonic devices [9]. Neuron outputs
are wavelength division multiplexed (WDM) and broadcast to
other neurons. At each neuron input, these WDM signals are
weighted by reconfigurable, continuous-valued filters called
microring (MRR) weight banks and then summed by total
power detection. This electrical weighted sum then modulates
the corresponding WDM carrier through a nonlinear electro-
optic device [10]. The first demonstration of a broadcast-and-
weight network [11] established a dynamical correspondence
with a continuous-time recurrent neural network (CTRNN)
model. Evidence of this dynamical correspondence was found
by reproducing bifurcations expected in the CTRNN. This
correspondence allows for the application of neural network
design tools to analog photonic networks, making them
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not merely reconfigurable, but programmable. For example,
a simulated continuous-time recurrent neural network with
modulator-class neurons can be programmed to solve nonlin-
ear differential equations with a 294× speedup compared to a
CPU baseline [11].

MRR weight banks are the seat of reconfigurability in
integrated analog photonic networks. Their performance is
therefore closely tied to the potential of these overall systems.
In a MRR weight bank, the transmission seen by a WDM
channel is configured by thermally tuning that filter on and
off resonance [12]. A bank of these filters coupled to two
bus waveguides independently weights all WDM channels. A
complementary –1 to +1 weight range is achieved by balanced
photodetection of the multiplexed bus WGs. Techniques for
extracting weight vectors from time-domain WDM measure-
ments and for precise control of MRR weights were introduced
in Ref. [13]. The demonstrated weight resolution of 4.1 bits
plus a sign bit (i.e. 34 distinguishable levels) is on par with
the weight resolution of digital neuromorphic electronics.

In a MRR-based WDM device, the channel count limit is de-
termined by the finesse of the resonators and the channel spac-
ing normalized to the filter linewidth. In MRR demultiplexers,
this channel density parameter trades off with inter-channel
crosstalk. In a weight bank, all WDM signals exit the same
pair of waveguides, so the concept of inter-channel crosstalk
breaks down. Instead, the channel density is limited by the
ability to weight neighboring signals independently [14]. A
unique property of the weight bank is the presence of two bus
waveguides between filters that act upon neighboring WDM
channels. Coherent paths can be formed for wavelengths that
partially couple through the neighboring filter.

The nature of inter-filter interference is fundmentally dif-
ferent for MRR filters that are odd-pole vs. even-pole. In a
odd-pole bank, a channel partially coupled through a neigh-
boring filter returns through the opposite bus WG to complete
a resonator-like feedback path; in an even-pole bank, the
partially dropped channel continues in the same direction
to instead complete an interferometer-like feedforward path.
Interferometer-like interference depends on a path length dif-
ference, rather than a sum, so changes that affect both bus WGs
equally should not change the interferometric phase condition.
Two-pole designs investigated in [15] can exploit inter-filter
interference to achieve a WDM density improvement of 3.4×.
Furthermore, the inter-channel phase condition is tolerant to
dynamic tuning only in 2-pole weight banks.

Neuromorphic silicon photonics [2] combines physical
models of optoelectronic systems with computational models
of neural networks. It represents a new opportunity for ma-
chine information processing on sub-nanosecond timescales.
The strategy of neuromorphic engineering is to externalize the
risk of developing computational theory alongside hardware.
The strategy of remaining compatible with silicon photonics
externalizes the risk of platform development. Silicon pho-
tonic manufacturing introduces unprecedented opportunities
for large-scale, analog photonic systems with wide reconfig-
urability. By applying neural abstractions for programming
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Fig. 2. Microring Weight Banks. a) Concept and device with tunable MRRs
– IN, DROP, and THRU are all multiplexed. b) Precise two-channel control
results – black grid is target; red is mean error; blue is variance. c) One-pole
(A) vs. Two-pole (B, C) designs. Two-pole designs are robust to tuning with
the asymmetric device (C) exhibiting the deepest isolation between peaks.

and learning interconnects, these systems could find applica-
tion in new regimes of information processing where speed,
adaptibility, and energy efficiency are paramount. Neuromor-
phic photonics is likely to first impact microwave signal
processing and scientific computing. It might also be applied
to ultrafast control and machine learning [16]. Since this
ultrafast computational regime is largely unexplored, it could
furthermore enable applications that are as of yet unknown.
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