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Abstract: Quantum photonic integrated circuits, composed
of linear-optical elements, offer an efficient way for encod-
ing and processing quantum information on-chip. At their
core, these circuits rely on reconfigurable phase shifters,
typically constructed from classical components such as
thermo- or electro-optical materials, while quantum solid-
state emitters such as quantum dots are limited to acting as
single-photon sources. Here, we demonstrate the potential
of quantum dots as reconfigurable phase shifters. We use
numerical models based on established literature param-
eters to show that circuits utilizing these emitters enable
high-fidelity operation and are scalable. Despite the inher-
ent imperfections associated with quantum dots, such as
imperfect coupling, dephasing, or spectral diffusion, we
show that circuits based on these emitters may be opti-
mized such that these do not significantly impact the uni-
tary infidelity. Specifically, they do not increase the infi-
delity by more than 0.001 in circuits with up to 10 modes,
compared to those affected only by standard nanophotonic
losses and routing errors. For example, we achieve fidelities
of 0.9998 in quantum-dot-based circuits enacting controlled-
phase and – not gateswithout any redundancies. Thesefind-
ings demonstrate the feasibility of quantum emitter-driven
quantum information processing and pave the way for
cryogenically-compatible, fast, and low-loss reconfigurable
quantum photonic circuits.
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1 Introduction
Reconfigurable quantum photonic integrated circuits
(qPICs) are versatile tools capable of simulating
molecular dynamics [1], executing quantum logic [2],
and generating multidimensional entanglement [3]–[7].
They utilize quantum properties such as entanglement and
indistinguishability for information processing, which is
unachievable through classical means. This capability is
crucial for developing emerging quantum communication
and computation technologies.

To date, qPICs have predominantly operated at room
temperature, harnessing the advancements of foundry pho-
tonics to create increasingly complex devices [8], [9]. As
depicted in Figure 1, the core of these circuits is a mesh
of Mach–Zehnder interferometers (MZIs) [10], where each
MZI is comprised of two directional couplers and two phase
shifters (see Figure 1(b)), typically thermo-optical in nature
[11], [12]. That is, this mesh is fully classical, based on
low-loss and highly accurate (albeit slow and hot) phase
shifters. More recently, electro-optic [13], [14] and opto-
mechanical [15], [16] phase shifters have become popular
alternatives, however, they are limited to large footprints
(>100 𝜇m lengths) and MHz modulation speeds, respec-
tively. Although any mesh, regardless of the type of phase
shifter, is susceptible to unbalanced nanophotonic imper-
fections including losses and imperfect routing, high-fidelity
operation is achievable with redundancy and optimization
[17]–[22].

The quantumnature of qPICs stems from the individual
photons that propagate through the circuits. Single pho-
tons are often generated by optical nonlinearities such as
spontaneous parametric down-conversion, which is com-
patible with room-temperature chips but inherently prob-
abilistic [23]–[25]. In contrast, single-photon sources based
on solid-state quantum emitters, such as the quantum dots
(QDs) we consider, can operate on-demand but require
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Figure 1: Scalable reconfigurable MZI meshes. (a) An exemplary 4-mode MZI mesh colored to represent nanophotonic losses in each interferometer.
(b) Normal distribution for nanophotonic loss with a mean of 4.5% and standard deviation that is 5% of the mean. (c) A zoom-in on the basic
component of the mesh (dashed region in a), a MZI with two phase shifters 𝜙 and 2𝜃 and two imperfect beam splitters along with the imperfect
transfer matrices for each component and for the overall nanophotonic loss.

cryogenic temperatures [26]–[29]. Similarly, high-efficiency
integrated single-photon detectors also necessitate a cryo-
genic environment [30]–[32]. As a result, both state-of-
the-art sources and detectors cannot be heterogeneously
integrated with qPICs and instead currently rely on lossy
interconnects [33].

Here, we propose that QDs can be used not only as
single-photon sources, but also as reconfigurable phase
shifters for creating fast, cryogenically-compatible meshes.
As photons scatter from QDs, and indeed all solid-state
emitters, the imparted phase shift depends on the detuning
between the photon and emitter transition frequency. For
the case of QDs, the detuning can be modulated electrically
[29], [34], optically [35], [36], or by using strain [37]. Our
model of QD-based qPICs builds from this operating prin-
ciple, yet additionally incorporates standard nanophotonic
imperfections, such as losses and routing errors, along with
QD-specific non-idealities, like imperfect interactions and
both fast and slow noise processes. We use this model to
evaluate the fidelity of both the resultant unitary operations
and the desired output states. Our findings reveal that these
QD-based meshes can be optimized to achieve remarkable
scalability, with a unitary infidelity less than 0.001 for cir-
cuits up to 10 × 10 in dimension, using state-of-the-art QD
parameters from the literature. We further consider QD-
based controlled-phase and – not gates as examples, where
we find that state-of-the-art circuits process logical states
with fidelities of 0.9998. In sum, our results offer a roadmap
to cryogenically-compatible, reconfigurable qPICs based on
solid-state quantum emitters.

2 Quantum-emitter phase shifters
The scattering of photons from a quantum emitter embed-
ded in a nanophotonic waveguide is a complex process [38]
that may modulate the photons’ amplitude or phase [39],
[40] or, when more than a single photon is present, induce
complex correlations [35], [41]. The exact response depends
on the properties of the emitter and the efficiency with
which it couples to the various available modes, as sketched
in Figure 2(a), yet in the most general case, an input single-
photon statewith phase𝜑0, |1⟩in = ||𝜑0⟩, will scatter into the
mixed state,

|1⟩out =
⎧
⎪
⎨
⎪⎩

𝛼co||𝜑0 +Δ𝜑⟩
𝛼inc||𝜑0⟩

, (1)

where, in the presence of losses the sum of the probabilities
to scatter coherently and incoherently, |𝛼co|2 and |𝛼inc|2, do
not sum to unity.

The description of Eq. (1) only holds if the single-photon
pulse is not reshaped during scattering, requiring that the
pulse linewidth 𝜎p be much shorter than that of the emitter.
More formally, we require that 𝜎p ≤ Γ∕1000, ensuring the
phase shifter response is linear. As shown in the Supple-
mentary Information, this condition holds for any two-level
system, including QDs.

In this regime, the single-photon transmission coeffi-
cient t and total transmission T are the same as that of a
weak coherent beam (see Supplementary Information for
derivation),
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Figure 2: Waveguide-coupled chiral quantum dots (QDs). (a) A QD chirally-coupled to a waveguide with its forward direction to the right, 𝛽R ≫ 𝛽L,
imparts a phase shiftΔ𝜑 on coherently-scattered photons but not to those with which it interacts incoherently (due to fast dephasing). If 𝛽R < 1,
then some photons are either reflected or scattered out of the waveguide. (b) Transmission spectrum of the interaction shown in (a). In the ideal case
(𝛽R = 1 and no noise, solid orange curve) all photons are transmitted, while if 𝛽R = 0.9 and Γdp = 0.1Γ then the presence of the QD will be imprinted
on the total transmission spectrum (solid red curve) and the coherent transmission spectrum (solid purple curve). The associated phase shift applied
to the coherently-scattered photons in both the ideal (orange) and non-ideal (purple) scenarios is shown in the dashed curves (right axis), which are
nearly identical such that they almost completely overlap. (c) On-resonance phase shift as a function of directionality and dephasing rate (inset: similar
map for a photon-emitter detuning ofΔp = 0.3Γ). The large region over whichΔ𝜑 = 𝜋 demonstrates the robustness of QD-based phase
shifters.

t = 1− Γ𝛽R
Γ2 + iΔp
Γ2
2 +Δ2

p
, (2)

T = 1− 2ΓΓ2
𝛽R(1− 𝛽R)(
Γ2
2 +Δ2

p

) , (3)

where 𝛽R is the coupling efficiency for right-traveling pho-
tons (with a total coupling efficiency 𝛽 = 𝛽R + 𝛽L), Δp is
the detuning between the photon and emitter-transition
frequencies, Γ is the decay rate of the emitter, and Γ2 =
Γ∕2+ Γdp where Γdp is the pure dephasing rate (i.e. fast
noise). We note that in the presence of dephasing, T ≠ |t|2
(c.f. Figure 2(b)), and that the emitter might also suffer from
slow noise leading to spectral diffusion with a characteristic
linewidth 𝜎sd.

Eqs. (2) and (3) allow us to quantify the results of the
scattering. The coefficients, 𝛼co and 𝛼inc, are related to the
transmission, as shown in Figure 2(b). In the ideal case,
where 𝛽R = 1 and Γdp = 0, the transmission is always unity
(orange curve) meaning that 𝛼co = 1 and 𝛼inc = 0. Con-
versely, in the presence of losses and/or dephasing, the situa-
tion ismore complexwith ||𝛼co||2 = |t|2 and ||𝛼inc||2 = T − |t|2
as shown by the purple and red curves.

The phase of the coherently-scattered photons is like-
wise calculated from Δ𝜑 = arg(t), here shown in dashed
curves in Figure 2(b) corresponding to the ideal and non-
ideal scenarios. As can be seen, the imparted phase shift
is nearly identical in both cases, spanning the full 2𝜋
and demonstrating the robustness of emitter-based phase
shifters. Full, 2D maps of the induced phase shift on
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resonance, Δp = 0, and at Δp = 0.3Γ, are shown in
Figure 2(c) and its inset, respectively, again demonstrating
that a 2𝜋 phase change is possible even when the direc-
tionality is below D < 0.25 or the dephasing rate is above
Γdp > 0.3Γ. However, this range also depends on emitter
parameters such as 𝛽 . Correspondingmaps of ||𝛼co||2 are pre-
sented in the Supplementary Information. Together, these
enable us to pick an emitter detuning for each desired phase
shift, and then calculate the scattered state (c.f. Eq. (1)).

3 QD-based qPICs
Having seen that quantumemitters such as QDs can serve as
reconfigurable phase shifters, we quantify the performance
of qPICs based on this technology. To do so, we first compare
howwell we can reproduce any unitary (i.e. operation) with
our emitter-based qPICs relative to the ideal, summarizing
the results in Figure 3. Here, we show the dependence of
the mean circuit infidelity  (i.e. error) as a function of (a)

𝛽 , (b) D, (c) Γdp and (d) 𝜎sd, where, in all,  is limited by
the nanophotonic errors as noted in the caption (see the
Supplementary Information for details on how these were
selected).

As an example, consider the 𝛽-dependence of , shown
in Figure 3(a). In dashed curves,we show the infidelity of the
non-ideal unitaryUnon, constructed following the procedure
of [10] using the set of phases {2𝜃i,𝜙i} (c.f. Figure 1(c)) cal-
culated for the ideal circuit, but with imperfections subse-
quently added (see Supplementary Information for details).
This corresponds to the offline training of a photonic circuit.
For each coupling efficiency 𝛽 , we compare 100 non-ideal
unitaries Unon to the ideal U to calculate [10]

 = 1−

|||||||||

tr
(
U†Unon

)
√
Ntr

(
U†
nonUnon

)

|||||||||

2

, (4)

which we then average. In the figure, we show the cases for
N = 2, 6, 10 mode circuits, where in all cases, we observe a

(a) (b) (c)

(d) (e)

Figure 3: The effects of QD imperfections on circuit unitary infidelity. All plots have 4.5 % nanophotonic loss [8] and 4 % beam splitter error [21].
(a–d) With no other QD imperfections, we examine the effects of (a) coupling efficiency, 𝛽 , (b) directionality, D, (c) pure dephasing rate, Γdp, and
(d) spectral diffusion, 𝜎sd on infidelity, showing both the imperfect (dashed) and optimized (solid) results. In all cases, state-of-the-art QD parameters
from literature are indicated by vertical dashed lines. (e) The infidelity of QD-based qPICs as a function of mesh size ranging from N = 2 to 10 for
circuits suffering only from nanophotonic imperfections (red), as well as those that additionally suffer from state-of-the-art QD imperfections (green)
or typical QD imperfections (blue). See Table 1 for QD parameter values. Also shown are infidelities for circuits based on typical QDs but no noise
(orange) or with only fast dephasing (purple), demonstrating that circuit errors are largely due to dephasing.
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monotonic increase from a baseline  due to the nanopho-
tonic imperfections when 𝛽 = 1, to near-unity error when
the coupling efficiency is 𝛽 = 0.5.

Encouragingly, we can optimize the performance of the
emitter-based qPICs, following a fast and efficient routine
that finds the optimal set {2𝜃i,𝜙i} at once [42]. This pro-
cedure results in an optimized unitary Uopt that, together
with Eq. (4), enables us to again calculate , which we
show as solid curves in Figure 3. In all cases, we observe
a significant reduction in errors due to the optimization,
with this reduction particularly pronounced for larger cir-
cuit sizes and in near-optimal conditions. For example,
in Figure 3(a), as 𝛽 → 1 corresponding to state-of-the-art
performance (dashed line) [43], we observe almost no
increased infidelity as the circuit size increases. A sim-
ilar dependence is observed as D and Γdp are scanned
(Figure 3(b) and (c), respectively), while spectral diffusion
only begins affecting the performance when 𝜎sd ≳ 0.01Γ
(Figure 3(d)).

Overall, we summarize the circuit scaling in Figure 3(e),
where we plot the raw and optimized infidelity as a func-
tion of circuit size, both using typical and state-of-the-art
parameters (see Table 1). For typical values (blue curve),
we see that the infidelity quickly approaches unity, yet
by adding imperfections sequentially (purple and orange
curves), we see that this is almost entirely caused by the
residual dephasing. This is consistent with the optimized
state-of-the-art qPIC performance (green curve), where  <
0.006 is observed for all circuits simulated (up to N = 10),
as several recent experiments based on QDs havemeasured
Γdp ≈ 0 [35], [44]–[47].

Table 1: State-of-the-art and typical quantum dot parameters.
Listed parameters include coupling, 𝛽 , directionality, D, dephasing, Γdp,
spectral diffusion detuning standard deviation, 𝜎sd. Though all
parameters are taken from the literature, and are justifiable individually,
it should be noted that they correspond to different types of waveguides.
For more details on these parameters, including the reported
uncertainties, see Section S3.1 of the Supplementary Information.

Typical Ref(s) State-of-the-art Ref(s)

𝛽 0.90 [44] 0.9843 [43]
D 0.90 [44] 0.95 [48]
Γdp 0.01Γ [35] 0Γ [35], [44]–[47]
𝜎sd 0.06Γ [49] 0Γ [50], [51]

4 Examples: CZ gate
To demonstrate the possibilities of emitter-based qPICs,
we consider the controlled-phase (CZ) gate, which can be
used to generate entanglement [52], and, in the Supplemen-
tary Information, a similar realization of a controlled-not
(CNOT) gate that enables universal quantum computation
[53]. A linear-optical unheralded CZ gate can be realized
on a 6 × 6 mesh [52], and in Figure 4(a) we plot the uni-
tary infidelity  (Eq. (4)) calculated as a function of Γdp for
circuits with only nanophotonic imperfections (red curve,
no dephasing), the addition of typical QD imperfections
(blue curve), and state-of-the-art QD imperfections (green
curve), where for the latter two cases the dephasing varies
along the horizontal axis (different from Table 1). For typ-
ical parameters,  > 0.25 regardless of the dephasing rate,
consistent with Figure 3. Interestingly, the optimized circuit
based on typical QD parameters is nearly identical to that
based on state-of-the-art when Γdp > 0.01Γ, meaning that
in this regime, the effect of dephasing dominates all other
emitter parameters. In contrast, the optimized curve for
state-of-the-art parameters, including all QD imperfections
(green), tends toward that for conventional phase shifters
(red) in the limit that dephasing approaches its state-of-the-
art value (Γdp ≈ 0). Additionally, while circuits with only
nanophotonic imperfections achieve an optimized unitary
infidelity of 0.0023, independent of Γdp, it increases only to
0.0037 at Γdp = 10−8Γ, 0.0065 at Γdp = 10−6Γ, and remains
less than 0.01 up to Γdp ∼ 10−5Γ.

More significantly, we consider the fidelity with which
logical states are processed by the CZ gate ( ) across Figure
4(b)–(d). Specifically, here we present the post-selected 4 ×
4 matrices for the CZ gate in the computational basis for
nanophotonic, state-of-the-art, and typical imperfections (as
in Table 1). The state fidelity is the chance the CZ gate pro-
duces the correct output in the computational basis for any
given input, given that the output is in the computational
basis. It is shown below the corresponding matrix in each
case (state fidelity calculation details are provided in the
Supplementary Information). Although the performance of
the typical circuit (Figure 4(d)) significantly differs from
the nanophotonic-only (Figure 4(b)), as expected, the cir-
cuit based on state-of-the-art QD parameters (Figure 4(c))
achieves  = 0.9998, matching the performance of circuits
constructed from traditional phase shifters. A similar figure
and result is presented in the Supplementary Information
for a CNOT gate. As demonstrated by these results, the state
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(a)

(b)

(c)

(d)

Figure 4: Unheralded CZ gate performance for nanophotonic,
state-of-the-art, and typical imperfections (as previously explained in
Figure 3 and Table 1). (a) Imperfect (dashed) and optimized (solid) unitary
infidelities (, c.f. Eq. (4)) as a function of dephasing. All QD parameters
other than Γdp are as listed in Table 1. Since circuits with only
nanophotonic imperfections do not suffer from dephasing,
their performance is flat in Γdp. (b–d) Optimized nanophotonic,
state-of-the-art, and typical post-selected 4 × 4 computational basis
matrices for the unheralded CZ gate, with corresponding conditional
output state fidelities listed below each matrix.

fidelity is typically better than the unitary fidelity, reinforc-
ing the viability of QD-based qPICs.

5 Conclusions
Our research demonstrates that qPICs built with reconfig-
urable QD-phase shifters can perform comparable to those
using classical phase shifters. Notably, we show that with
state-of-the-art QD parameters, circuits can be scaled up to
10 modes without significant increases in unitary infidelity.
This advancement allows QD-based qPICs to efficiently per-
form operations such as multi-qubit gates, as demonstrated
in our study, and to simulate molecular dynamics [54] at
cryogenic temperatures. In this respect, QD-based phase
shifters join a select class that includes electro-optical [13],
[14] and opto-mechanical [15], [16] shifters, but with a
much smaller footprint, low operational energy and fast
response times. As with current quantum photonic circuits,
the performance of emitter-based systems could be further
enhanced by incorporating redundancies, where extraMZIs
and phase shifters provide better compensation for imper-
fections [17], [19]–[21].

We recognize that while QDs are the only quantum
emitters currently integrated into photonic circuits, alter-
native technologies based on single organic molecules [55],
[56] and defects in diamond [57], [58], silicon [59], or silicon
carbide [60], [61] are rapidly maturing. In fact, even with
QDs, not all state-of-the-art parameters have been demon-
strated using a single chiral quantum photonic platform
(c.f. Table 1). To date, however, high quality chiral quantum
interfaces have been demonstrated with nanobeams [48],
glide-plane waveguides [44] and topological photonics [62],
[63]. Recent calculations suggest that, were the emitter to
be placed at exactly the correct location within either pho-
tonic resonators [64] or waveguides [65], these could act as
near-ideal chiral interfaces. This is particularly promising
in light of recent developments demonstrating the ability to
pre-select specific QDs and integrate them deterministically
within a circuit [66]–[71].

Finally, we note that fabricating and managing circuits
with numerous emitters remains a topic of inquiry. Recent
experiments with QDs have successfully demonstrated the
integration of deterministic QD-based single-photon sources
with qPICs [72], [73], and independent control of multi-
ple emitters within a circuit [74]–[76], respectively. These
advancements open the door to larger-scale implementa-
tions where emitters would function both as sources and
processing elements. Such circuits would be entirely cryo-
genic, and thus compatible with deterministic sources and
detectors, with phase shifters whose operational speeds are
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determined by emitter lifetimes, potentially enabling GHz
rate operation with mild enhancement [50].
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S1 Transmission and Phase Shift from a Chirally Coupled

Quantum Dot

A quantum dot can be modeled as a two-level system (TLS) with a ground state |gi and an excited state
|ei, allowing their light-matter interaction to be modeled using the Jaynes-Cummings Hamiltonian
[S1] as,

ĤS = �~�P �̂eg�̂ge + ~!P f̂(r)
†
f̂(r)� d̂ · Ê(r). (S1)

The first term describes the dynamics of the emitter’s TLS where �̂ij = |iihj|, and �P = !P�!A is the
detuning between the driving light field frequency, !P , and the emitter’s resonant frequency, !A. The
second term, with the bosonic creation and annihilation operators f̂† and f̂ , describes the energy of the
free field at the position r. The final term describes the light-matter interaction between the transition
dipole of the emitter, d̂ = d

⇤
�̂eg + d�̂ge, and the electric field, Ê = Ê

+ + Ê
�. Using the rotating wave

approximation and the Lindblad master equation [S2], we can determine the steady-state solution for
the response of the TLS in terms of its reduced density matrix elements ⇢ij as,

⇢ee =
2�2⌦2

P

�(�2
2 +�2

P + 4(�2/�)⌦2
P )

⇢ge =
�⌦P (i�2 +�p)

�2
2 +�2

P + 4(�2/�)⌦2
P

, (S2)

where � = �ee is the rate of spontaneous emission of the TLS, also corresponding to the natural
linewidth of the emitter in the frequency spectra. �2 = �/2 + �dp where �dp is the rate of dephasing
in the system, and ⌦P = d · E/~ is the Rabi frequency of the light-matter system.

The electric field operators for the light field can be written in terms of the Green’s tensor
 !
G (r, r0),

the solution for the electric field operator of a point source, and the bosonic creation and annihilation
operators [S3] as,

Ê
+(r,!P ) = i!

2
Pµ0

r
~
⇡
✏0

1Z

�1

dr
0
q
✏I(r0,!P )

 !
G (r, r0) · f̂(r0,!P )

Ê
�(r,!) = �i!2

Pµ0

r
~
⇡
✏0

1Z

�1

dr
0
q
✏I(r0,!P )

 !
G

⇤(r, r0) · f̂†(r0,!P ). (S3)

Equations S1 and S3 allow us to write the time evolution of the bosonic annihilation operator
using the Heisenberg Equation of motion as,

˙̂
f(r,!P ) =

i

~

h
Ĥ, f̂(r,!P )

i

= �i!P f̂(r,!P ) + !
2
Pµ0

r
~
⇡
✏0d(rA)

q
✏I(r,!P )

 !
G

⇤(rA, r,!P )�̂ge, (S4)
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where rA is the position of the emitter in the waveguide. Formally integrating this equation from time
t
0 to t results in [S4],

f̂(r,!P , t) = f̂(r,!P , t
0) exp(�i!P (t� t

0))+

!
2
Pµ0

r
~
⇡
✏0

tZ

0

dt
0
d(rA)

q
✏I(r,!P )

 !
G

⇤(rA, r,!P )�̂ge(t
0)e�i!P (t�t0)

, (S5)

where the first term describes a free excitation in the system that does not interact with the emitter,
and the second term describes an interaction with the emitter either through a decay from excited to
ground state or through a scattering event (virtual transition). Thus, we can write the electric field
operator as,

Ê
+ = Ê

+
P + Ê

+
S , (S6)

where Ê
+
P represents the incident field and Ê

+
S represents the scattered field. The transmission coef-

ficient for the light in the system is written in terms of the expectation values of these fields as,

t =
hÊ+i
hÊ+

P i
, (S7)

and the phase shift on the light from the interaction with the emitter is,

� = arg(t). (S8)

Equations S3 and S5, with the help of the Green’s tensor identity [S3] and Kramer’s Kronig
relations [S5], allow the scattered field in terms of the incident field as,

Ê
+
S (r, t) =

1

⌦̂P

g(r, rA,!A)�̂ge(t)Ê
+
P (rA, t), (S9)

where we have defined the Rabi frequency operator as ⌦̂P = d
⇤ · Ê+

P /~, where h⌦̂P i = ⌦P , and we use
the dipole-projected Green’s function [S3],

g(ri, rj ,!) =
µ0!

2

~
d
⇤(ri) ·G(ri, rj ,!) · d(rj). (S10)

For a chirally coupled quantum dot, the dipole projected Green’s function becomes,

g(r, rA,!) = i�(⇥(rA � r)�L +⇥(r � rA)�R)e
ikp|r�rA|

, (S11)

where ⇥ is the Heaviside function and we define the couplings for photons moving left �L and for
photons moving right �R as,

�L =
�L

�
=

�L

�L + �R + �Loss
, (S12)

�R =
�R

�
=

�R

�L + �R + �Loss
. (S13)

In the low-power regime (weak coherent beam) where ⌦P ! 0, the scattering event that imparts a
phase shift will dominate over spontaneous emission, allowing the emitter to act as a phase shifter.
From Equations S2 and S7 the transmission coefficient becomes,

t = 1� ��R
�2 + i�p

�2
2 +�2

p

, (S14)

where we have defined the forward direction as right for simplicity. The phase shift can then be
calculated with Equation S8. With the same assumptions, the observable transmission, T , can be
written as,

T =
hÊ�

Ê
+i

hÊ�
P Ê

+
P i

T = 1� 2��2
�R(1� �R)
(�2

2 +�2
p)

. (S15)
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S2 Ideal Phase Solution Using Unitary Decomposition

To solve the ideal phase shifts for a target unitary we follow the decomposition and recombination
method proposed by Clements et al. [S6] where an ideal MZI is built up from the 2 ⇥ 2 transfer
matrices of two 50 : 50 directional couplers and two phase shifters (�, 2✓) as,

MZI =
1p
2

"
1 i

i 1

# "
e
i2✓ 0
0 1

#
1p
2

"
1 i

i 1

# "
e
i� 0
0 1

#

= ie
i✓

"
e
i�
sin✓ cos✓

e
i�
cos✓ �sin✓

#

, (S16)

which can be expanded into the N ⇥N matrix,

T
(p)
m,n =

2

666666666664
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0
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...
... . . . ie
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...
... . . . ie
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e
i�
cos✓ �iei✓sin✓ . . .

...
... . . . . . . . . .

. . . 0
0 . . . . . . . . . 0 1

3

777777777775

, (S17)

representing the pth MZI between modes m and n in the circuit. To solve for the ideal phases the
Clements method [S6] then decomposes the unitary into a diagonal matrix D by applying MZIs/inverse
MZIs using each of the N(N�1)/2 MZIs to nullify an off-diagonal entry. The result for a 4⇥4 unitary
is,

T̃
(1)
3,4 T̃

(1)
2,3UT

(0)�1
1,2 T

(0)�1
3,4 T

(0)�1
2,3 T

(1)�1
1,2 = D, (S18)

where the indicates that these MZIs do not correspond to the hardware MZIs as they will be changed
during the recombination steps. To determine the required phases for these MZIs, the algorithm is as
follows; If a T

(p)�1
m,n is being applied, the phases are chosen as,

✓ =
⇡

2
� arctan

✓����
UNull[x,m]

UNull[x, n]

����

◆

� = ⇡ + arg

✓
UNull[x,m]

UNull[x, n]

◆
, (S19)

where UNull corresponds to the partially decomposed matrix at the current decomposition step, and
the index x is the row index of the element being nullified. Conversely, if a T

(p)
m,n is being applied to

the LHS, the phases are chosen as,

✓ =
⇡

2
� arctan

✓����
UNull[n, y]

UNull[m, y]

����

◆

� = ⇡ + arg

✓
UNull[n, y]

UNull[m, y]

◆
, (S20)

where now the column index y corresponds to the column of the element being nullified.
For the recombination step, isolate for U in Equation S18, and shift the diagonal matrix to the

left, replacing it and the T̃
(p)�1
m,n ’s according to,

T̃
(p)�1
m,n D = D1T

(p)
m,n, (S21)
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where D1 is another diagonal matrix and T
(p)
m,n is the MZI that corresponds to the hardware imple-

mentation. The new phases for T
(p)
m,n, following the Clements solution are,

✓ =
⇡

2
� arctan

✓����
M [n,m]

M [n, n]

����

◆

� = ⇡ + \M [n,m]

M [n, n]
, (S22)

where M = T̃
�1
m,n,pD. From here, we determine the new diagonal matrix as,

D1 = T̃
(p)�1
m,n DT

(p)�1
m,n . (S23)

By repeating these steps until D is on the left side of the formula, we get, for a 4⇥ 4, an equation for
the ideal unitary as,

U = D
0
T

(1)
2,3 T

(1)
3,4 T

(1)
1,2 T

(0)
2,3 T

(0)
3,4 T

(0)
1,2 , (S24)

where we have relabelled the final diagonal matrix as D
0, which corresponds to global phase shifts

applied at the end of the MZI mesh.

S3 Imperfect Transfer Matrix Generation

Imperfections are added to the transfer matrices at the MZI level, which combine to form an imperfect
transfer matrix using Equation S24. The first imperfection we consider is nanophotonic loss, originating
from waveguide propagation losses and beam splitter losses. For this, we use the common [S7–S10]
assumption that loss is balanced across MZI paths, modeling the loss as,

Loss =

"p
1� L 0
0

p
1� L

#

. (S25)

Beam splitter error on the directional couplers is also included, modeled using the standard variable
beam splitter matrix,

BS =

" p
r i

p
1� r

i
p
1� r

p
r

#

, (S26)

where r is the reflectivity of the beam splitter and r = 0.5 in the ideal case.
Past experiments involving photonic integrated circuits have demonstrated typical MZI insertion

losses ranging from 1.15% to 4.5% [S7]. These values all include the losses contributed by the two phase
shifters in each MZI, though we include losses from the QD phase shifters in addition to these losses as
discussed below. Regardless, since our study is platform-independent, it is best to make a conservative
choice. Therefore, we take 4.5% nanophotonic loss per MZI. With regards to beam splitter error, we
similarly make the conservative choice of 4%, as consistent with Ref. [S11], even though these may be
as low as 0.23% [S12].

Quantum dot phase shift imperfections are factored into the model as well. Imperfect coupling,
� = �L + �R < 1, and imperfect directionality, D = (�R � �L)/(�L + �R) < 1, are included through
their effects on quantum dot loss, modeled as � = 1 � T , where T is the observable transmission in
the system calculated using Equation S15. This is included using the lossy phase shift matrix,

PS =

"p
1� �e� 0
0 1

#

. (S27)

Figure S1 depicts how the quantum dot loss � is sampled for each phase shifter from a distribution
with a central value � = 1 � T with a standard deviation of 5% of the central value to model
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fluctuations between different quantum dots. Combining all these imperfections into the model, each
MZI is calculated using the imperfect matrix,

MZI =

" p
r2 i

p
1� r2

i
p
1� r2

p
r2

# "p
1� �2ei2✓ 0

0 1

# " p
r1 i

p
1� r1

i
p
1� r1

p
r1

#

"p
1� �1ei� 0

0 1

# "p
1� L 0
0

p
1� L

#

, (S28)

which is then combined with all other imperfect MZIs to build an N ⇥N imperfect transfer matrix.
This is depicted as a circuit in Figure S1a, which shows how MZIs combine to form a 4 ⇥ 4 circuit,
where Figure S1c shows the breakdown of each MZI component with its appropriate transfer matrix.

Fig. S1: Imperfect circuit transfer matrix generation with example quantum dot loss distribution. (a) 4 ⇥ 4 MZI mesh
circuit depicting QD loss for each quantum dot in the MZIs. The color in the top-left branch of each MZI indicates the loss
for the � phase shifter, and the color in the top-right branch of each MZI indicates the loss for the 2✓ phase shifter. If the
path is black this indicates no QD loss in that region of the circuit. (b) Normal distribution for QD loss with a central value
of 17% and a standard deviation of 5% of 17%. (c) MZI with transfer matrices for the two QD phase shifters with losses
�1 and �2 as colored, the two beam splitters with reflectivities r1 and r2 and nanophotonic loss per MZI of L.

This imperfect transfer matrix does not include dephasing and spectral diffusion, which are in-
cluded in QD imperfections. Dephasing provides a chance of having an incoherent interaction with
an average phase shift of 0, calculated as |↵inc|2 = (T � |t|2)/T . Consequently, the probability of
a coherent interaction is |↵co|2 = 1 � |↵inc|2. Figure S2 depicts the coherence probability based on
dephasing and directionality for detunings of �P = 0� in Figure S2a and �P = 0.3� in Figure S2.
The larger the detuning, the higher the coherence probability, since there is less interaction with the
quantum dot and thus less dependence on dephasing.

Dephasing is modeled using a Monte-Carlo simulation with 500 samples, where in each trial
each phase shifter is sampled to be on/off based on its QD’s incoherence probability, generating 500
imperfect unitaries on which we average the performance.

Spectral diffusion is also included in these Monte-Carlo simulations, where for each phase shifter
we sample a shift in detuning, and consequently phase, from a normal distribution with a standard
deviation of �SD, modeling the fluctuations from spectral diffusion in the system. Figure S3 depicts the
spectral diffusion effects on detuning and phase shift for an example spectral diffusion of �SD = 0.06�.
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Fig. S2: Coherent phase shift probability (|↵co|2) maps spanning dephasing (0� to 0.5�) and directionality (0 to 1) with
coupling of � = 0.9 (a) �P = 0� (b) �P = 0.3�.

The detuning shift is sampled from the normal distribution shown in Figure S3a, with Figure S3b
showing the phase shift distribution for phase shifts of ⇡ and ⇡/2, and Figure S3c showing a sample
MZI pre and post spectral diffusion shift. It is evident that large phase shifts (like ⇡) where �P ! 0
will have large fluctuations since detuning will often change signs, whereas smaller phase shifts with
larger detuning such as ⇡/2 will not see as much spectral diffusion influence.

S3.1 Selecting Experimental Parameters for Imperfections

In Tab. S1, we provide an alternate version of Tab. 1 from the main text that includes further details on
the selected typical and state-of-the-art experimental QD parameters used in the simulations. Though
the uncertainties are estimated with different methods depending on the particular reference, they
are included where possible to more accurately reflect the results reported in the literature. Also, we
explicitly note the types of waveguides, if applicable, used in the experiments that measured these
results. Here, it is evident that some of the parameters correspond to different waveguide types. As a
result, it should be noted that this study was meant to remain as platform-independent as possible to
provide a general overview of the proposed QD-based qPICs.

With regards to the state-of-the-art coupling, �, though Ref. [S13] reports 0.99 ± 0.01, we chose
the result of Ref. [S14] due to the reduced uncertainty.
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Fig. S3: Spectral Diffusion effects on detuning and phase shift for �SD = 0.06�. (a) Normal distribution for detuning shift
from spectral diffusion. (b) Phase shift distribution example for initial phases of ⇡ and ⇡/2 (inset). (c) Example MZI with
initial phases of � = ⇡ and 2✓ = ⇡/2 before and after sampling spectral diffusion.

Tab. S1: State-of-the-art and typical quantum dot parameters. Listed parameters include coupling, �, directionality, D,
dephasing, �dp, spectral diffusion detuning standard deviation, �sd. Uncertainties and waveguide types are reported where
available and applicable (NBW: nanobeam waveguide, PhC: photonic crystal waveguide, GPW: glide-plane photonic crystal
waveguide, N/A: no waveguide). When there are multiple references, the waveguide types are listed in order.

Typical Waveguide Ref(s) State-of-the-art Waveguide Ref(s)

� 0.90 GPW [S15] 0.9843 ± 0.0004 PhC [S14]
D 0.90 ± 0.013 GPW [S15] 0.95 ± 0.05 NBW [S16]
�dp 0.01� PhC [S17] 0� PhC, GPW, N/A, N/A, N/A [S15, S17–S20]
�sd 0.06� NBW [S21] 0� PhC, N/A [S22, S23]

S4 Circuit Accuracy Measurement Methods and Phase

Optimization

The accuracy of an imperfect transfer matrix (non-ideal U) for each circuit is calculated using the
matrix infidelity [S6],

I = 1�

������
tr(U†Unon)q
Ntr(U†

nonUnon)

������

2

, (S29)

which excludes balanced losses, allowing us to focus on accuracy over count rate. However, for the
CZ and CNOT gate, we consider accuracy using the post-selected output state infidelity instead.
Since the CNOT and CZ are two-photon gates, their matrices must be converted into the fock basis
by calculating the matrix permanent [S24]. However, only four inputs/outputs of these expanded
matrices correspond to the computational two-qubit basis states {|00i, |01i, |10i, |11i}. Thus, for each
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input-output pair, we calculate the unconditional output state following the equation,

| (i,unc)
out,noni = Unon| (i)

in i, (S30)

where | (i,unc)
out,noni is the imperfect unconditional output state in the fock basis, and Unon,  

(i)
in are also

in the fock basis. These states are then post-selected by truncating them down to the computational
basis states resulting in four-entry vectors and re-normalizing them. The conditional output state
infidelity for an input-output pair is then calculated using,

I(con)
i = 1�

���
D
 
(i,con)
out | (i,con)

out,non

E���
2
. (S31)

We also consider the post-selected 4 ⇥ 4 computational basis matrices in the main text, which
are found by truncating the fock basis matrix down to the 4 ⇥ 4 matrix corresponding to the four
computational basis inputs and outputs and re-normalizing the matrix.

To perform phase shift optimization on these circuits, we use the appropriate cost function (Equa-
tion S29 or S31) to measure the circuit error, and perform an optimization on all phases using the
BOBYQA optimization algorithm [S25]. To do this, we began by determining the phase shifts for
a given unitary in the ideal case using the Clements decomposition method outlined in Section S2.
Then, imperfections were added to the circuit to calculate the imperfect transfer matrix and its as-
sociated infidelity. For optimization, the ideal phases were chosen as initial phase guesses, with phase
constraints of [�⇡,⇡], which are required as this is a constrained optimization algorithm. When op-
timizing circuits with dephasing/spectral diffusion, the cost function averages the infidelity for 500
sampled matrices to find the cost for every optimization step.

S5 CNOT Gate Results

Similar to the results for the CZ gate in the main text, here we consider the unheralded CNOT gate, a
6-mode circuit with 1/9 probability of success. The performance was first measured using the matrix
infidelity (Equation S29) spanning from dephasing of �dp = 10�8�! 10�1� for nanophotonic, state-
of-the-art and typical imperfections as shown in Figure S4. These imperfections are the same as listed
in the main text. The results show that performance and optimization depend heavily on dephasing,
where incoherent interactions heavily hinder performance. However, state-of-the-art quantum dot
imperfections can be optimized to perform on par with nanophotonic imperfections with no dephasing.
Next, as described in Section S4, the CNOT gate circuit was optimized based on the average conditional
output state infidelity (Equation S31). The optimized post-selected 4⇥4 computational basis matrices
for nanophotonic, state-of-the-art, and typical imperfections are shown in Figure S4b-d, along with
their optimized conditional output state infidelities. The output state performance is near perfect for
nanophotonic and state-of-the-art imperfections, despite overall performing poorer than the CZ due
to increased circuit complexity.

S6 Random Circuit Infidelity Distributions

Each infidelity data point in the results is the result of a beta distribution across 100 Haar random
unitary matrices to simulate random circuit performance accurately. A beta distribution is used to
accurately average the data as the infidelity distribution across 100 samples is asymmetric and includes
outliers. A beta distribution follows the probability density function,

f(x) =
(x� a)p�1(b� x)q�1

B(p, q)(b� a)p+q�1
, (S32)
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Fig. S4: Unheralded CNOT performance for nanophotonic, state-of-the-art, and typical imperfections. (a) Matrix infidelity
as a function of dephasing. The nanophotonic infidelities with no dephasing are shown as horizontal lines across the figure.
(b-d) Optimized nanophotonic, state-of-the-art, and typical post-selected 4 ⇥ 4 computational basis matrices for the unher-
alded CNOT gate, with conditional output state fidelities listed.
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where a and b are the lower and upper bounds on x, p and q are shape parameters where p, q > 0 and
B(p, q) is the beta function that follows the equation,

B(↵,�) =

1Z

0

t
↵�1(1� t)��1

dt. (S33)

Figure S5 shows an example infidelity histogram for an N = 4 circuit with an arbitrary choice of
2.3% beam splitter error. This figure also plots a beta fit, normal distribution fit, and the mean of
the data. The mean and normal fit in Figure S5 both result in average infidelity that is higher than

Fig. S5: Matrix infidelity histogram over 100 Haar random N = 4 circuits for a beam splitter error of 2.3%, with no other
imperfections. Here we show the mean of the data (green), a beta fit (orange), and a normal fit (blue), to the data.

the majority of the data. Conversely, the beta fit accounts for the asymmetry, representing the data
accurately. Thus, the mean of the beta fit is used for random circuit infidelity results.

S7 Linear Response Pulse Width Constraint

The scattering of few-photon Fock states by a two-level system chirally-coupled to a one-dimensional
waveguide can be described using an input-output formalism, as demonstrated in [S26]. Here, we
will use the scattering matrices for one and two-photon Fock states to demonstrate the linear phase
response that arises when the photon pulse width �p is much less than the linewidth of the quantum
emitter �. Then, we select a practical constraint for �p where the emitter can be used as a linear phase
shifter for Fock states of up to two photons. For simplicity, we will assume perfect directionality and
no loss.

As shown in [S26], the single-photon scattering matrix elements are given by,

hp|S |qi = t(q)�(q � p) : t(q) ⌘
q � !A � i�

2

q � !A + i�
2

, (S34)

where S is the scattering matrix, |qi = a
†
q |0i, and !A is the transition frequency of the quantum

emitter. Consider a single-photon wave packet with a pulse shape ↵(!), centered at angular frequency
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!0, as the input state,

|ini1 =

1Z

�1

d!↵(!)a†! |0i . (S35)

The output state can be derived as,

|outi1 =

1Z

�1

d!t(!)↵(!)a†! |0i , (S36)

by first applying the scattering matrix to the input, then inserting closure followed by Eq. S34. Most
commonly, ↵(!) will take either a Gaussian or Lorentzian form, both of which can be parameterized
by width �p. For either form, ↵(!) ⇠ �(! � !0) in the limit �p ! 0 which implies,

|outi1 ⇠ t(!0)a
†
!0

|0i . (S37)

In the lossless case, |t(!)| = 1 and arg {t(!)} varies with detuning � = !A � !0 from �⇡ to ⇡.
Therefore, the quantum emitter acts as a perfect phase shifter when acting on single-photon Fock
states in the monochromatic limit.

We now turn to the two-photon scattering matrix elements, derived in Ref. [S26] as,

hp1p2|S |q1q2i = t(p1)t(p2) [�(q1 � p1)�(q2 � p2) + �(q1 � p2)�(q2 � p1)]

+
i
p
�

⇡
s(p1)s(p2) [s(q1) + s(q2)] �(q1 + q2 � p1 � p2), (S38)

where |q1q2i = 1p
2
a
†
q1a

†
q2 |0i and s(!) is a measure of the excitation of the emitter by a single-photon

wave packet, defined by,

s(!) ⌘
p
�

q � !A + i�
2

. (S39)

With the input as the two-photon analog of Eq. S35,

|ini2 =
1p
2

1Z

�1

d!1

1Z

�1

d!2↵(!1)↵(!2)a
†
!1
a
†
!2

|0i , (S40)

the output can be derived by following the same procedure to obtain the result,

|outi2 =
1p
2

1Z

�1

d!1

1Z

�1

d!2

"

t(!1)t(!2)↵(!1)↵(!2) +
i
p
�

2⇡
s(!1)s(!2)

⇥
1Z

�1

dp↵(!1 + !2 � p)↵(p) (s(!1 + !2 � p) + s(p))

#

a
†
!1
a
†
!2

|0i . (S41)

This output state consists of the sum of a purely uncorrelated part with a part that features correlations
between the photons, however, these parts are not orthogonal. Therefore, it is not trivial to show
analytically that only a linear phase response occurs in the limit �p ! 0. Instead, given that the input
state is purely uncorrelated, we plot the input-output overlaps in Fig. S6 for one and two-photon Fock
states as a function of �p assuming a Lorentzian pulse shape,

↵(!) =

r
2

⇡

q
�3
p

�2
p + (! � !0)2

, (S42)

for convenience, yet without loss of generality in the limit �p ! 0, and resonance such that !A = !0.
We find that these overlaps are purely real for all �p, and are able to clearly identify the desired linear
phase response,

|outin = e
i arg{t(!0)} |inin , (S43)
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Fig. S6: Overlap between an input uncorrelated n-photon wave packet with Lorentzian pulse shape and the output state
achieved after the photons scatter from a perfectly chiral two-level quantum emitter coupled to a 1D waveguide, as a func-
tion of pulse width �p. Each photon is assumed to be centered on resonance with the quantum emitter transition frequency
such that � = !A � !0 = 0, and the interaction is assumed to be lossless.

for �p  0.001�, where arg {t(!0)} = ⇡ on resonance. Specifically, the magnitudes of the input-output
overlaps are both > 0.99 if this constraint is met.

In other words, the condition we have derived states that the photons input to a QD phase shifter
should be approximately monochromatic relative to the QD to avoid reshaping. This implies that
the linewidth of the QD is a degree-of-freedom which may be tuned by engineering the surrounding
nanophotonic environment to achieve this requirement. For example, if the QD is placed in a cavity, its
linewidth may be broadened by enhancing the emission. In contrast, subradiant states of coherently-
coupled quantum emitters may be used to slow emission.
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