
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2013 1800212

A Leaky Integrate-and-Fire Laser Neuron
for Ultrafast Cognitive Computing

Mitchell A. Nahmias, Student Member, IEEE, Bhavin J. Shastri, Member, IEEE,
Alexander N. Tait, Student Member, IEEE, and Paul R. Prucnal, Fellow, IEEE

Abstract—We propose an original design for a neuron-inspired
photonic computational primitive for a large-scale, ultrafast cog-
nitive computing platform. The laser exhibits excitability and be-
haves analogously to a leaky integrate-and-fire (LIF) neuron. This
model is both fast and scalable, operating up to a billion times
faster than a biological equivalent and is realizable in a compact,
vertical-cavity surface-emitting laser (VCSEL). We show that—
under a certain set of conditions—the rate equations governing
a laser with an embedded saturable absorber reduces to the be-
havior of LIF neurons. We simulate the laser using realistic rate
equations governing a VCSEL cavity, and show behavior repre-
sentative of cortical spiking algorithms simulated in small circuits
of excitable lasers. Pairing this technology with ultrafast, neural
learning algorithms would open up a new domain of processing.

Index Terms—Cognitive computing, excitability, leaky
integrate-and-fire (LIF) neuron, mixed-signal, neural networks,
neuromorphic, optoelectronics, photonic neuron, semiconductor
lasers, spike processing, ultrafast, vertical-cavity surface-emitting
lasers (VCSELs).

I. INTRODUCTION

IN AN effort to break the limitations inherent in traditional
von Neumann architectures, some recent projects in com-

puting have sought more effective signal processing techniques
by leveraging the underlying physics of devices [1]–[6]. Cogni-
tive computing platforms inspired by biological neural networks
could solve unconventional computing problems and outper-
form current technology in both power efficiency and complex-
ity [7]–[9]. These novel systems rely on an alternative set of
computational principles, including hybrid analog-digital signal
representations, colocation of memory and processing, unsuper-
vised learning, and distributed representations of information.
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Fig. 1. Spiking neural networks encode information as events in time rather
than bits. Because the time at which a spike occurs is analog while its amplitude
is digital, the signals use a mixed signal or hybrid-encoding scheme.

On the cellular level, the brain encodes information as events
or spikes in time [10], a hybrid signal with both analog and
digital properties as illustrated in Fig. 1. This encoding scheme
is equivalent to analog pulse position modulation (PPM) in op-
tics, which has been utilized in various applications includ-
ing the implementation of robust chaotic communication [11]
and power efficient channel coding [12]. Spike processing has
evolved in biological (nervous systems) and engineered (neu-
romorphic analog VLSI) systems as a means to exploit the ef-
ficiency of analog signals while overcoming the problem of
noise accumulation inherent in analog computation [13]. Vari-
ous technologies have emulated spike neural networks in elec-
tronics, including IBM’s neurosynaptic core as part of DARPA’s
SyNAPSE program [1], [2] and Neurogrid as part of Stanford’s
Brains in Silicon program [14]. Although these architectures
have garnered success in various applications, they aim to target
biological time scales rather than exceed them. Microelectronic
neural networks that are both fast and highly interconnected are
subject to a fundamental bandwidth fan-in tradeoff.

Photonic platforms offer an alternative approach to micro-
electronics. The high speeds, high bandwidth, and low crosstalk
achievable in photonics are very well suited for an ultrafast
spike-based information scheme. Because of this, photonic spike
processors could access a computational domain that is inac-
cessible by other technologies. This domain, which we describe
as ultrafast cognitive computing, represents an unexplored pro-
cessing paradigm that could have a wide range of applications in
adaptive control, learning, perception, motion control, sensory
processing (vision systems, auditory processors, and the olfac-
tory system), autonomous robotics, and cognitive processing of
the radio frequency spectrum.

There has been a growing interest in photonic spike process-
ing which has spawned a rich search for an appropriate com-
putational primitive. The first category includes those based on
discrete, fiber components [15]–[17]. However, the platform’s
reliance on nonlinear fibers and other similar technologies have
made demonstrations bulky (on the order of meters), complex,
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and power-hungry (hundreds of watts). The platform is simply
unscalable beyond a few neurons. Integrated lasers, in contrast,
are physically compact and are capable of using feedback rather
than feedforward dynamics to radically enhance nonlinearity.
Feedback allows for the emergence of more complex behaviors,
including bistability, the formation of attractors, and excitability.

Excitability is a dynamical system property that underlies all-
or-none responses. Its occurrence in a variety of different lasing
systems has received considerable interest [18], [19]. Excitabil-
ity is also a critical property of biological spiking neurons [20],
[21]. More recently, several excitable lasers have demonstrated
biological-like spiking features. One proposal suggests using
excitability in semiconductor lasers [22], [23] based on weakly
broken Z2 symmetry close to a Takens–Bogdanov bifurcation,
yet another suggests using emergent biological features from
polarization switching in a vertical-cavity surface-emitting laser
(VCSEL) [24]. However, these models have yet to demonstrate
some key properties of spiking neurons: the ability to perform
computations without information degradation, clean-up noise,
or implement algorithms.

In this paper, we show for the first time that a photonic com-
putational primitive based on an integrated, excitable laser with
an embedded saturable absorber (SA) behaves analogously to a
leaky integrate-and-fire (LIF) neuron. The LIF model is one of
the most ubiquitous models in computational neuroscience and
is the simplest known model for spike processing [25]. We also
show that our laser neuron can be employed to carry out cortical
algorithms through several small circuit demonstrations. Emu-
lating this model in a scalable device represents the first step in
building an ultrafast cognitive computing platform.

II. LASER NEURON—THEORETICAL FOUNDATIONS

Our device is based upon a well-studied and paradigmatic ex-
ample of a hybrid computational primitive: the spiking neuron.
In this section, we briefly review the spiking neuron model and
reveal the analogy between the LIF model and our own.

A. Spiking Neuron Model

Studies of morphology and physiology have pinpointed the
LIF model as an effective spiking model to describe a vari-
ety of different biologically observed phenomena [26]. From
the standpoint of computability and complexity theory, LIF
neurons are powerful computational primitives that are capa-
ble of simulating both Turing machines and traditional sig-
moidal neural networks [27]. Signals are ideally represented
by series of delta functions: inputs and outputs take the form
x(t) = Σn

j=1δ(t − τj ) for spike times τj . Individual units per-
form a small set of basic operations (delaying, weighting, spa-
tial summation, temporal integration, and thresholding) that are
integrated into a single device capable of implementing a vari-
ety of processing tasks, including binary classification, adaptive
feedback, and temporal logic.

The basic biological structure of an LIF neuron is depicted
in Fig. 2(a). It consists of a dendritic tree that collects and
sums inputs from other neurons, a soma that acts as a low-
pass filter and integrates the signals over time, and an axon that

Fig. 2. (a) Illustration and (b) functional description of a leaky integrate-and-
fire neuron. Weighted and delayed input signals are summed into the input
current Iapp (t), which travel to the soma and perturb the internal state variable,
the voltage V . Since V is hysteric, the soma performs integration and then
applies a threshold to make a spike or no-spike decision. After a spike is
released, the voltage V is reset to a value Vreset . The resulting spike is sent to
other neurons in the network.

carries an action potential, or spike, when the integrated signal
exceeds a threshold. Neurons are connected to each other via
synapses, or extracellular gaps, across which chemical signals
are transmitted. The axon, dendrite, and synapse all play an
important role in the weighting and delaying of spike signals.

According to the standard LIF model, neurons are treated as
electrical devices. The membrane potential Vm (t), the voltage
difference across their membrane, acts as the primary internal
(activation) state variable. Ions that flow across the membrane
experience a resistance R = Rm and capacitance C = Cm as-
sociated with the membrane. The soma is effectively a first-
order low-pass filter, or a leaky integrator, with the integration
time constant τm = Rm Cm that determines the exponential de-
cay rate of the impulse response function. The leakage current
through Rm drives the membrane voltage Vm (t) to 0, but an
active membrane pumping current counteracts it and maintains
a resting membrane voltage at a value of Vm (t) = VL .

Fig. 2(b) shows the standard LIF neuron model [27]. A neu-
ron has: 1) N inputs which represent induced currents in input
synapses xj (t) that are continuous time series consisting either
of spikes or continuous analog values; 2) an internal activation
state Vm (t); and 3) a single output state y(t). Each input is in-
dependently weighted by ωj , which can be positive or negative,
and delayed by τj resulting in a time series that is spatially
summed (summed pointwise). This aggregate input induces an
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Fig. 3. An illustration of spiking dynamics in an LIF neuron. Spikes arriving
from inputs xj (t) that are inhibitory (red arrows) reduce the voltage V (t),
while those that are excitatory (green arrows) increase V (t). Enough excitatory
activity pushes V (t) above Vthresh , releasing a delta function spike in y(t), fol-
lowed by a refractory period during which V (t) recovers to its resting potential
VL .

electrical current, Iapp(t) = Σn
j=1ωj xj (t − τj ) between adja-

cent neurons.
The weights wj and delays τj determine the dynamics of net-

work, providing a way of programming a neuromorphic system.
The parameters internal to the behavior of individual neurons
include the resting potential VL and the membrane time con-
stant τm . There are three influences on Vm (t)—passive leakage
of current, an active pumping current, and external inputs gener-
ating time-varying membrane conductance changes. Including
a set of digital conditions, we arrive at a typical LIF model for
an individual neuron:

dVm (t)
dt︸ ︷︷ ︸

Activation

=
VL

τm︸︷︷︸
Active pumping

− Vm (t)
τm︸ ︷︷ ︸

Leakage

+
1

Cm
Iapp(t)

︸ ︷︷ ︸
External input

; (1a)

if Vm (t) > Vthresh, then

release a pulse at tf and set Vm (t) → Vreset . (1b)

The dynamics of an LIF neuron are illustrated in Fig. 3. If
Vm (t) ≥ Vthresh , then the neuron outputs a spike which takes the
form y(t) = δ(t − tf ), where tf is the time of spike firing, and
Vm (t) is set to Vreset . This is followed by a relatively refractory
period, during which Vm (t) recovers from Vreset to the resting
potential VL in which is difficult, but possible to induce the firing
of a spike. 1 Consequently, the output of the neuron consists of
a continuous time series comprised of spikes taking the form
y(t) = Σiδ(t − ti) for spike firing times ti .

B. Excitable Laser Model

Our starting point is a set of dimensionless equations de-
scribing SA lasers that can generalize to a variety of different
systems, including passively Q-switched microchip lasers [28],
distributed Bragg reflector lasers [29], and VCSELs [30]. Below,
we will show that a series of approximations leads to behavior
that is isomorphic with LIF neurons.

1There may also be a short, absolute refractory period τrefrac for which
Vm (tf + ∆t) = Vreset if ∆t ≤ τrefrac , and during which no spikes may be
fired. Although this condition typically precedes the relative refractory period,
we have omitted this from the model since it does not significantly affect the
underlying dynamics.

Fig. 4. A simple schematic of an SA laser. The device is composed of (i) a
gain section, (ii) a saturable absorber, and (iii) mirrors for cavity feedback. In the
LIF excitable model inputs selectively perturb the gain optically or electrically.

We begin with the Yamada model [31], which describe the
behavior of lasers with independent gain and SA sections with
an approximately constant intensity profile across the cavity as
illustrated in Fig. 4. We assume that the SA has a very short
relaxation time on the order of the cavity intensity, which can
be implemented either through doping or special material prop-
erties. The dynamics now operate such that the gain is a slow
variable, while the intensity and loss are both fast. This 3-D dy-
namical system can be described with the following equations:

˙G(t) = γG [A − G(t) − G(t)I(t)] (2a)

˙Q(t) = γQ [B − Q(t) − aQ(t)I(t)] (2b)

˙I(t) = γI [G(t) − Q(t) − 1] I(t) + ϵf(G) (2c)

where G(t) models the gain, Q(t) is the absorption, I(t) is the
laser intensity, A is the bias current of the gain, B is the level
of absorption, a describes the differential absorption relative to
the differential gain, γG is the relaxation rate of the gain, γQ

is the relaxation rate of the absorber, γI is the reverse photon
lifetime, and ϵf(G) represents the small contributions to the
intensity made by spontaneous emission, (noise term) where ϵ
is very small.2

We further assume that inputs to the system cause perturba-
tions to the gain G(t) only. Pulses—from other excitable lasers,
for example—will induce a change △G as illustrated by the
arrows in Fig. 5 and analog inputs will modulate G(t) continu-
ously. This can be achieved either injection via the optical pulses
that selectively modulate the gain medium or through electrical
current injection. We also make the additional assumption that
the laser exhibits behavior similar to region 2 of the bifurcation
diagram presented in [31], but with a fast absorber.

1) Before Pulse Formation: Since the loss Q(t) and the in-
tensity I(t) are fast, they will quickly settle to their equilibrium
values. On slower time scales, our system behaves as:

˙G(t) = γG [A − G(t) − G(t)I(t)] + θ(t) (3a)

2Nondimensionalization allows us to set γI to 1, but we include this variable
in our description to explicitly compare time scales between variables G, Q,
and I .
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Fig. 5. Simulation results of an SA laser behaving as an LIF neuron. Ar-
rows indicate excitatory pulses and inhibitory pulses that change the gain by
some amount △G. Enough excitatory input causes the system to enter fast
dynamics in which a spike is generated, followed by the fast recover of the ab-
sorption Q(t) and the slow recover of the gain G(t). Variables were rescaled to
fit within the desired range. Values used: A = 4.3; B = 3.52; a = 1.8; γG =
.05; γL , γI ≫ .05.

Q(t) = Qeq (3b)

I(t) = Ieq (3c)

with θ(t) representing possible inputs, and the equilibrium val-
ues Qeq = B and Ieq = ϵf(G)/γI [1 − G(t) + Q(t)]. Since ϵ
is quite small, Ieq ≈ 0. With zero intensity in the cavity, the G(t)
and Q(t) variables are dynamically decoupled. The result is that
if inputs are incident on the gain, they will only perturb G(t)
unless I(t) becomes sufficiently large to couple the dynamics
together.

If I(t) increases, the slow dynamics will break. Since
İ(t) ≈ γI [G(t) − Q(t) − 1] I(t), I(t) will reach instability
when G(t) − Q(t) − 1 > 0. Given our perturbations to G(t),
we can define a threshold condition:

Gthresh = Q + 1 = B + 1 (at equilibrium) (4)

above which fast dynamics will take effect. This occurs after the
third excitatory pulse in Fig. 5.

2) Pulse Generation: Perturbations that cause G(t) >
Gthresh will result in the release of a short pulse. Once I(t)
is lifted above the invariant plane {I = 0}, I(t) will increase
exponentially. This results in the saturation of Q(t) and the de-
pletion of the gain G(t). Once G(t) − Q(t) − 1 < 0, I(t) will
hit its peak intensity Imax and Q(t) will reach its minimum
Q ≈ 0, followed by a fast decay of both I and Q on the order
of 1/γI and 1/γQ in time, respectively. I(t) will eventually
reach I ≈ 0 as it further depletes the gain to a final value Greset ,
which—with a large enough intensity—is often close to the
transparency level, i.e., Greset ≈ 0.

A given pulse derives its energy from excited carriers in the
cavity. The total energy of the pulse is Epulse = Nhν, where N
is the number of excited carriers that have been depleted and hν
is the energy of a single photon at the lasing frequency. Because
the gain is proportional to the inversion population, N must

Fig. 6. Normalized, simulated transfer functions for a single pulse, operating
the laser with a low equilibrium state (red curve) and a near-threshold equilib-
rium (blue curve). When a perturbation △G brings G(t) above Gthresh (i.e.
△G = Gthresh − Geq ), the neuron fires a pulse with energy Epulse . Setting
Geq close to Gthresh reduces the required perturbation △G to initiate a pulse
and thereby minimizes the impact it has on the resulting output pulse, leading
to the flatter region above threshold on the blue curve. A laser operating near
threshold would minimize amplitude variations in the output.

be proportional to the amount that the gain G(t) has depleted
during the formation of a pulse. Thus, if Gfire is the gain that
causes the release of a pulse, we can expect that an output pulse
will take the approximate form:

Pout = Epulse · δ(t − τf ) (5)

Epulse ∝ Gfire − Greset (6)

where τf is the time at which a pulse is triggered to fire and δ(t) is
a delta function. One of the properties of spike-encoded channels
is that spike energies are encoded digitally. Spikes must have
a constant amplitude every iteration, a characteristic property
of the all-or-nothing response shared by biological neurons.
We can normalize our output pulses if we set our system to
operate close to threshold Gthresh − Geq ≪ Gthresh . Since the
threshold is effectively lowered, the size of input perturbations
△G must be scaled smaller. This implies Gfire ≈ Gthresh , which
helps in suppressing variations in the output pulse amplitude by
reducing the input perturbation to the system. This leads to a
step-function like response, as illustrated in Fig. 6, which is the
desired behavior.

After a pulse is released, I(t) → 0 and Q(t) will quickly
recover to Qeq . The fast dynamics will give way to slower
dynamics, in which G(t) will slowly creep from Greset to Geq .
The fast dynamics of Q(t) assure that the threshold Gthresh =
1 + Q(t) recovers quickly after a pulse is generated, preventing
partial pulse release during the recovery period. In addition, the
laser will experience a relative refractory period in which it is
difficult—but not impossible—to fire another pulse.

3) LIF Analogy: If we assume the fast dynamics are nearly
instantaneous, then we can compress the behavior of our system
into the following set of equations and conditions:

dG(t)
dt

= −γG (G(t) − A) + θ(t); (7a)

if G(t) > Gthresh, then

release a pulse, and set G(t) → Greset . (7b)
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where θ(t) represent input perturbations. This behavior can be
seen qualitatively in Fig. 5. The conditional statements account
for the fast dynamics of the system that occur on times scales
of order 1/γI , and other various assumptions—including the
fast Q(t) variable and operation close to threshold—assure that
Gthresh , Greset and the pulse amplitude Epulse remain constant.
If we compare this to the LIF model, or equation (1):

Cm
dVm (t)

dt
= − 1

Rm
(Vm (t) − VL ) + Iapp(t);

if Vm (t) > Vthresh , then

release a spike and set Vm (t) → Vreset .

The analogy between the equations becomes clear. Setting the
variables γG = 1/Rm Cm ,A = VL , θ(t) = Iapp(t)/Rm Cm ,
and G(t) = Vm (t) shows their algebraic equivalence. Thus, the
gain of the laser G(t) can be thought of as a virtual membrane
voltage, the input current A as a virtual leakage voltage, etc.3

There is a key difference; however—both dynamical systems
operate on vastly different time scales. Whereas biological
neurons have time constants τm = Cm Rm on order of millisec-
onds, carrier lifetimes of laser gain sections are typically in the
nanosecond range and can go down to picosecond.

III. EXCITABLE VCSELS

Although the excitable model is generalizable to a variety
of different laser types, VCSELs are a particularly attractive
candidate for our computational primitive as they occupy small
footprints, can be fabricated in large arrays allowing for massive
scalability, and use low powers [32]. An excitable, VCSEL with
an intracavity SA that operates using the same rate equation
model described previously has already been experimentally
realized [33]. In addition, the technology is amenable to a variety
of different interconnect schemes: VCSELs can send signals
upward and form 3-D interconnects [34], can emit downward
into an interconnection layer via grating couplers [35] or connect
monolithically through intracavity holographic gratings [36].

A schematic of our VCSEL structure, which includes an in-
tracavity SA, is illustrated in Fig. 7. To simulate the device, we
use a typical two-section rate equation model such as the one
described in [30]:

dNph

dt
= Γaga(na − n0a)Nph (8a)

+ Γsgs(ns − n0s)Nph − Nph

τph
+ VaβBrn

2
a

dna

dt
= −Γaga(na − n0a)

(Nph − φ(t))
Va

− na

τa
(8b)

+
Ia + ie(t)

eVa

dns

dt
= −Γsgs(ns − n0s)

Nph

Vs
− ns

τs
+

Is

eVs
(8c)

3Our laser lacks an absolute refractory period variable τrefrac seen in some
LIF models, but the absence of this condition does not significantly affect its
qualitative behavior.

Fig. 7. A schematic diagram of a VCSEL-SA embedded in a network. In
this configuration, inputs λ1 , λ2 , . . . , λn modulate the gain selectively. Vari-
ous frequencies lie on different parts of the gain spectrum, leading to different
excitatory and inhibitory responses. The weights and delays are applied by am-
plifiers and delay lines within the fiber network. If excited, a pulse at wavelength
λ0 is emitted upward and is eventually incident on other excitable lasers.

TABLE I
VCSEL-SA EXCITABLE LASER PARAMETERS [37]–[40]

where Nph(t) is the total number of photons in the cavity, na(t)
is the number of carriers in the gain region, and ns(t) is the
number of carriers in the absorber. Subscripts a and s identify the
active and absorber regions, respectively. The remaining device
parameters are summarized in Table I. We add an additional
input term φ(t) to account for optical inputs selectively coupled
into the gain, an additional modulation term ie(t) to represent
electrical modulation in the gain, and an SA current injection
term Is/eVs to allow for an adjustable threshold. For small
perturbations, φ(t) and ie(t) possess similar functionalities and
represent equally valid ways of modulating our laser with analog
inputs.

These equations are analogous to the dimensionless set
of equations (2) provided that the following coordinate
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transformations are made:

G(t̃) = τphΓaga(na(t) − n0a), I(t̃) =
τaΓaga

Va
Nph(t)

Q(t̃) = τphΓsgs(n0s − ns(t)), t̃ =
t

τph

where differentiation is now with respect to t̃ rather than t. The
dimensionless parameters are now

γG =
τph

τa
, A = τaτphΓaga

[
Ia

eVa
− n0a

τa

]

γQ =
τph

τs
, B = τsτphΓsgs

[
n0s

τs
− Is

eVs

]

γI = 1, a =
τsΓsgsVa

τaΓagaVs

ϵf(G) = τaτphΓagaβBrn
2
a .

For the simulation, we set the input currents to Ia = 2 mA
and Is = 0 mA for the gain and absorber regions, respectively.
The output power is proportional to the photon number Nph
inside the cavity via the following formula:

Pout(t) ≈
ηcΓa

τp

hc

λ
Nph(t) (9)

in which ηc is the output power coupling coefficient, c the speed
of light, and hc/λ is the energy of a single photon at wavelength
λ. We assume the structure is grown on a typical GaAs-based
substrate and emits at a wavelength of 850 nm.

Using the parameters described previously, we simulated the
device with optical injection into the gain as shown in Fig. 8.
Input perturbations that cause gain depletion or enhancement—
represented by positive and negative input pulses—modulate the
carrier concentration inside the gain section. Enough excitation
eventually causes the laser to enter fast dynamics and fire a
pulse. This behavior matches an LIF neuron model as described
in Section II-B3.

Our simulation effectively shows that an excitable LIF neuron
is physically realizable in a VCSEL-SA cavity structure. The
carrier lifetime of the gain is on the order of 1 ns, which as
we have shown in Section II-B3 is analogous to the Rm Cm

time constant of a biological neuron—typically on the order
of 10 ms. Thus, our device already exhibits speeds that are 10
million times faster than a biological equivalent. Lifetimes could
go as short as a picosecond, making the potential factor speed
increase between biology and photonics up to a billion.

IV. CORTICAL SPIKE ALGORITHMS—SMALL-CIRCUIT

DEMONSTRATIONS

Since our laser behaves identically to an LIF model, we can
create a wide variety of useful networks that can implement
a diversity of cortical functions. This section describes imple-
mentation of biologically inspired circuits with the excitable
laser computational primitive. We have constructed circuits with
unique properties as a proof of concept of system creation and
wireability. These examples form a basis for a small-scale va-
lidity of any theoretical or experimental demonstration of im-

Fig. 8. Simulation of an excitable, LIF VCSEL-SA with realistic parameters.
Inputs (top) selectively modulate the carrier concentration in the gain section
(middle). Enough excitation leads to the saturation of the absorber to trans-
parency (bottom) and the release of a pulse, followed by a relative refractory
period while the pump current recovers the carrier concentration back to its
equilibrium value.

portant processing tasks that underlie many spiking neural net-
works. Though rudimentary, the circuits presented here are fun-
damental exemplars of three spike processing functions: mul-
tistable operation, synfire processing [41], and spatiotemporal
pattern recognition [42]. Multistability forms the basis of at-
tractor networks [43], synfire chains describe a mechanism with
which neurons can form distributed representations of informa-
tion to avoid noise degradation [44], and pattern recognition
has been implicated in playing a crucial component in working
memory [45].

We stipulate a mechanism for optical outputs of excitable
lasers to selectively modulate the gain of others through both
excitatory (gain enhancement) and inhibitory (gain depletion)
pulses as illustrated in Fig. 7. Selective coupling into the gain
can be achieved by positioning the gain and saturable absorber
regions to interact only with specific optical frequencies as ex-
perimentally demonstrated in [33]. Excitation and inhibition can
be achieved via the gain section’s frequency dependent absorp-
tion spectrum—different frequencies can induce gain enhance-
ment or depletion. This phenomenon has been experimentally
demonstrated in semiconductor optical amplifiers (SOAs) [46]
and could generalize to laser gain sections if the cavity modes are
accounted for. Alternatives to these proposed solutions include
photodetectors with short electrical connections and injection
into an extended gain region in which excited carriers are swept
into the cavity via carrier transport mechanisms.
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A network of excitable lasers connected via weights and
delays—consistent with the model described in Section II-A—
can be described as a delayed differential equation (DDE) of the
form:

d

dt
x⃗(t) = f(x⃗(t), x⃗(t − τ1), x⃗(t − τ2) . . . x⃗(t − τn )) (10)

where the vector x⃗(t) contains all the state variable associated
with the system. The output to our system is simply the output
power ⃗Pout(t),4 while the input is a set of weighted and delayed
outputs from the network σ(t) =

∑
k Wk P⃗out(t − τk ). We can

construct weight and delay matrices W,D such that the Wij

element of W represents the strength of the connection between
excitable lasers i, j, and the Dij element of D represents the
delay between lasers i, j. If we recast (8) in a vector form, we
can formulate our system in (10) given that the input function
vector φ⃗(t) is

φ⃗(t) = ΩΘ⃗(t) (11)

where we create a sparse matrix Ω containing information
for both W and D, and a vector Θ⃗(t) that contains all
the past outputs from the system during unique delays U =
[τ1 , τ2 , τ3 , . . . , τn ]:

Ω = [W0 W1 W2 . . . Wn ] (12)

Θ⃗(t) =

⎛

⎜⎜⎜⎜⎜⎝

⃗Pout(t)
⃗Pout(t − τ1)
⃗Pout(t − τ2)

...
⃗Pout(t − τn )

⎞

⎟⎟⎟⎟⎟⎠
. (13)

Wk describes a sparse matrix of weights associated with the
delay in element k of the unique delay vector U . To simulate
various system configurations, we used Runge–Kutta methods
iteratively within a standard DDE solver in MATLAB. This for-
mulation allows the simulation of arbitrary networks of excitable
lasers.

Since weighing and delaying are both linear operations, they
can be implemented optically with passive devices. A physi-
cal architecture of a tunable weight-delay network is illustrated
in Fig. 9. Excitable lasers send pulses into an optical network,
which may use amplifiers, filters, or switching technologies to
sort and distribute the spikes en route to other excitable lasers.
The combined inputs incident on a single laser embedded within
the network are then weighted and delayed individually by tun-
able optical attenuators and delay lines before arrival.

A tunable weight-delay input array as depicted in Fig. 9—
which can be thought of as the photonic equivalent of a dendritic
tree—has been experimentally realized in a photonic beam for-
mer [47]. With the appropriate integrated, tunable attenuators
and delay lines—which can be implemented using ring res-
onators structures [48], [49] or other technologies [50], [51]—
this array could be compacted into a small footprint, allowing

4We absorb the attenuation or amplification the pulse experiences en route
to its destination along with the responsivity of the perturbation to the incident
pulse into a single weight parameter Wij .

Fig. 9. A physical architecture of a photonic neural network with tunable
weights and delays (two lasers displayed). Laser outputs are separated from
inputs with use of a circulator and travel into an optical network that evenly
distributes spiking signals across the entire device landscape. Before signals
arrive at their respective destinations, they interface with a front-end control
unit that applies weights wij and delays τij to signals traveling from lasers i to
j .

for massive network integration. Further work will explore the
scalability of this approach. Described next are several circuits
that could potentially utilize this architecture to perform tasks
specific to spike processing.

A. Multistable System

Multistability represents a crucial property of dynamical sys-
tems and arises out of the formation of hysteric attractors. This
phenomenon plays an important role in the formation of memory
in processing systems. Here, we describe a network of two inter-
connected excitable lasers, each with two incoming connections
and identical weights and delays, as illustrated in Fig. 10(a). The
system is recursive rather than feedforward, possessing a net-
work path that contains a closed loop. This allows the system to
exhibit hysteresis.

Results for the two laser multistable system are shown in
Fig. 10(b). The network is composed of two lasers, intercon-
nected via optical connections with a delay of 1 ns. An excitatory
pulse travels to the first unit at t = 5 ns, initiating the system
to settle to a new attractor. The units fire pulses repetitively at
fixed intervals before being deactivated by a precisely timed in-
hibitory pulse at t = 24 ns. It is worth noting that the system is
also capable of stabilizing to other states, including those with
multiple pulses or different pulse intervals. It, therefore, acts as a
kind of optical pattern buffer over longer time scales. Ultimately,
this circuit represents a test of the network’s ability to handle re-
cursive feedback. In addition, the stability of the system implies
that a network is cascadable since a self-referent connection is
isomorphic to an infinite chain of identical lasers with identi-
cal weights W between every node. Because this system suc-
cessfully maintains the stability of self-pulsations, processing
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Fig. 10. (a) Bistability schematic—In this configuration, two lasers are con-
nected symmetrically to each other. (b) A simulation of a two laser system
exhibiting bistability with connection delays of 1 ns. The input perturbations
to unit 1 are plotted, followed by the output powers of units 1 and 2, which
include scaled version of the carrier concentrations of their gain sections as the
dotted blue lines. Excitatory pulses are represented by positive perturbations
while inhibitory pulses are represented by negative perturbations. An excitatory
input excites the first unit, causing a pulse to be passed back and forth between
the nodes. A precisely timed inhibitory pulse terminates the sequence.

networks of excitable VCSELs are theoretically capable of cas-
cadibility and information retention during computations.

B. Synfire Chain

Synfire chains have been proposed by Abeles [52] as a model
of cortical function. A synfire chain is essentially a feedforward
network of neurons with many layers (or pools). Each neuron
in one pool feeds many excitatory connections to neurons in the
next pool, and each neuron in the receiving pool is excited by
many neurons in the previous pool, so that a wave of activity can
propagate from pool to pool in the chain. It has been postulated
that such a wave corresponds to an elementary cognitive event
[53].

Synfire chains can use population encoding to reduce jitter
accumulation when sending, receiving, or storing a spatiotem-
poral bit pattern of spikes [41]. Population encoding works by
making multiple copies of a pulse and distributing it via sev-
eral distinct channels. When these copies arrive and recombine

Fig. 11. (a) Synfire schematic—In this configuration, two groups of lasers are
connected symmetrically two each other. (b) Simulation of a four laser circuit
forming synfire chains with connection delays of 14 ns. The input perturbations
to units 1, 2 are plotted over time, followed by the output powers of units 1–4
with the scaled carrier concentrations of their gain sections as the dotted blue
lines. A characteristic spike pattern is repeatedly passed back and forth between
the left and right set of nodes.

onto the same subsequent processing unit, jitter and amplitude
noise accumulated in statistically uncorrelated channels are av-
eraged and therefore reduced. One of the key features of a hybrid
analog-digital system such as an spiking neural networks (SNN)
is that many analog nodes can process in a distributed and re-
dundant way to reduce noise accumulation. Recruiting a higher
number of neurons to accomplish the same computation is an
effective and simple way of reducing spike error rates.

Fig. 11(a) shows a demonstration of a simple four-laser syn-
fire chain with feedback connections. The chain is simply a two
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unit expansion of each node in the multistability circuit from
Fig. 10(a). Like the multistability circuit, recursion allows the
synfire chain to possess hysteric properties; however, the use of
two lasers for each logical node provides processing redundancy
and increases reliability. Once the spike pattern is input into the
system as excitatory inputs injected simultaneously into the first
two lasers, it is continuously passed back and forth between
each set of two nodes. The spatiotemporal bit pattern persists
after several iterations and is thereby stored in the network as
depicted in Fig. 11(b).

C. Spatiotemporal Pattern Recognition Circuit

The concept of polychrony, proposed by Izhikevich [42] is
defined as an event relationship that is precisely time-locked to
firing patterns but not necessarily synchronous. Polychroniza-
tion presents a minimal spiking network that consists of cortical
spiking neurons with axonal delays and synaptic time dependent
plasticity (STDP), an important learning rule for spike-encoded
neurons. As a result of the interplay between the delays and
STDP, spiking neurons spontaneously self-organize into groups
and generate patterns of stereotypical polychronous activity.

One of the key properties of polychronization is the ability
to perform delay logic to perform spatiotemporal pattern recog-
nition. As shown in Fig. 12(a), we construct a simple three
unit pattern recognition circuit of excitable lasers with carefully
tuned delay lines, where each subsequent neuron in the chain
requires stronger perturbations to fire. The resulting simulation
is shown in Fig. 12(b). Three excitatory inputs separated se-
quentially by ∆t1 = 5 ns and ∆t2 = 10 ns are incident on all
three units. The third is configured only to fire if it receives an
input pulse and pulses from the other two simultaneously. The
system, therefore, only reacts to a specific spatiotemporal bit
pattern.

Although this circuit is simple, the ability to perform temporal
logic implies that excitable, neuromorphic systems are capable
of categorization and decision making. Two existing applica-
tions utilize temporal logic, including light detection and rang-
ing sensitivity that is analogous to an owl’s echolocation system
and the escape response of a crayfish [54], [55]. Combined
with learning algorithms such as STDP which has recently been
demonstrated in optics [56], networks could potentially perform
more complex tasks such as spike-pattern cluster analysis.

V. DISCUSSION

A. Comparing Technological Platforms

Cortically-inspired microelectronic architectures have tradi-
tionally targeted biological time scales. Several proposals [3],
[57] suggest using a crossbar array to network neurons together,
essentially a dense mesh of wires overlaying the CMOS (pro-
cessor) substrate. This is to achieve a massive fan-in and fan-out
per connection, which is typical in neural networks but less
critical in conventional processors. Several popular approaches
aim to achieve clock rates comparable to biological time scales,
but transmitting high-bandwidth spikes at the speeds of cur-
rent processors (gigahertz)—which tend to have high bandwidth

Fig. 12. (a) Schematic of a three-laser circuit that can recognize specific
spatiotemporal bit patterns. (b) A simulation of a spatiotemporal recognition
circuit with △t1 = 5 ns and △t2 = 10 ns. The input perturbation to unit 1
is plotted, along with the output powers of units 1–3 with the scaled carrier
concentrations of their gain sections as the dotted blue lines. The third neuron
fires during the triplet spike pattern with time delays △t1 and △t2 between
spikes.

requirements—could overrun the system with electromagnetic
interference (EMI). Signals would quickly attenuate, disperse,
or couple together unfavorably, especially on a crossbar array,
which has a large area of closely packed signal wires. In contrast,
light can support the high frequency components of spikes and
large fan-in and fan-out per connection with almost no crosstalk
through techniques such as wavelength division multiplexing.
Achieving both high speeds and large interconnection densities
simultaneously is comparably impossible in electronics.
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The ability to make a technology that complements the phys-
ical constraints that guide it, rather than abstracting them away
entirely, represents an important step in streamlining efficiency
and performance. Optics is a perfect fit for high bandwidth spike
information and could represent a highly efficient processing
scheme that ties closely to its underlying physics.

B. Improvements Over Previous Models

Past photonic neurons have demonstrated important features
of biological neurons but did not integrate enough properties
together to make effective processors. One of the first imple-
mentations of a photonic spiking neuron [15] achieved noise
suppression and thresholding through a nonlinear optical loop
mirror, generated pulses synchronously via a mode-locked laser,
and utilized an SOA for integration. This model demonstrated
temporal integration and spike thresholding, but too much ex-
citation could lead to the release of multiple pulses, degrading
spike-encoded information. In addition, spikes were not asyn-
chronous, making the output of the system digital.

The fully functioning photonic neuron demonstrated by
Kravstsov [16] integrated both excitation and inhibition, but
also suffered from the problems mentioned previously. A newer
asynchronous model was proposed in [17] that generated spikes
based on incoming spikes. Although the system could emit a
pulse at analog times, because the system did not generate its
own spikes through internal mechanisms, the spikes could even-
tually degrade into noise as nonspike inputs led to nonspike
outputs.

The excitable models are a step in the right direction, given
the similarities between lasers and biological phenomena and
the stability of feedback systems. However, both of the recent
proposals [22], [24] have a large, base intensity level that un-
derlies spike outputs. Spikes resemble variations of the output
intensity rather than pulses. A base-level intensity can poten-
tially be debilitating: by adding constant optical power into
the inputs, one can change the equilibrium levels of internal
state variables. Programming the synaptic weights wij would
simultaneously modulate the internal dynamics of each laser in
addition to the strength between connections, causing forward
propagating system dependences. In addition, a constant base
level intensity could increase amplified spontaneous emission
noise within the network, decreasing its robustness.

Although biological neurons also have a continuously varying
state variable (voltage) during an an action potential, the actual
response is thresholded by voltage-gated reversal potentials that
only induce neurotransmitter release between cells during a
spike. It is unclear if the semispiking signals emitted by these
other lasers could be processed effectively by subsequent units
in a network. These lasers would probably require an optical
thresholder such as [58] or a nonlinear OEO (optical–electrical–
optical) connection in addition to the units already proposed to
work effectively.

The neuron model described here avoids many previous issues
by combining an excitable approach with some of the ideas of
the feedforward model. The integration of a laser gain section—
which is dynamically analogous to an SOA—and a saturable

absorber, which is essentially a feedback version of the thresh-
older used in the fiber model, leads to many desirable properties
and a close analogy with biology, including the formation of
highly stereotyped and well-defined optical spikes.

VI. CONCLUSION

In summary, we have proposed and simulated a novel op-
tical signal processing device that is capable of implementing
cortical-inspired algorithms. We have shown that, unlike pre-
vious models, our device can effectively perform cognitive al-
gorithms at ultrafast time scales. This model is demonstrably
analogous to an LIF neuron, and networks of such devices are
stable, robust to noise, and can recognize patterns.

Spike processing algorithms are well understood in a num-
ber of important biological sensory processing systems and are
finding growing use in signal processing applications [27]. The
combination of these physiological principles with engineer-
ing not only helps in studying biological neural circuits [59],
but the pairing of computational technology with underlying
physics could achieve new domains of application and study.

Ultrafast optical STDP, one of the most important algorithms
for spike-based learning, has recently been demonstrated exper-
imentally [56]. All the components used in this experiment—
including the Mach–Zehnder configuration, the EAM, and the
SOA—can be fabricated with a small footprint in planar pho-
tonics. Integrating this together with LIF excitable neurons
on a single chip could lead to systems that emulate a well-
established paradigm for adaptive computing on a scalable plat-
form. These compact, adaptive, and unconventional processing
systems would operate on unprecedented time scales. Large net-
works could potentially be constructed as liquid state machines
for optical reservoir computing [60] to aid in the study of bi-
ology or open up new ultrafast environments such as the RF
spectrum for neuromorphic experimentation.
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M. Versace, H. Ames, S. Patrick, B. Chandler, A. Gorchetchnikov, and
E. Mingolla, “From synapses to circuitry: Using memristive memory to
explore the electronic brain,” Computer, vol. 44, no. 2, pp. 21–28, 2011.

[10] S. Thorpe, A. Delorme, and R. Van Rullen, “Spike-based strategies for
rapid processing,” Neural Netw., vol. 14, no. 6–7, pp. 715–725, 2001.

[11] M. Sushchik Jr., N. Rulkov, L. Larson, L. Tsimrin, H. Abarbanel, K. Yao,
and A. Volkovskii, “Chaotic pulse position modulation: A robust method
of communicating with chaos,” IEEE Commun. Lett., vol. 4, no. 4, pp. 128–
130, Apr. 2000.

[12] D.-S. Shiu and J. M. Kahn, “Differential pulse-position modulation for
power-efficient optical communication,” IEEE Trans. Commun., vol. 47,
no. 8, pp. 1201–1210, 1999.

[13] R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics to
neurobiology,” Neural Comput., vol. 10, no. 7, pp. 1601–1638, Oct. 1998.

[14] K. Boahen, “Neurogrid: Emulating a million neurons in the cortex,” in
Proc. IEEE Int. Conf. Eng. Med. Biol. Soc., 2006, p. 6702.

[15] D. Rosenbluth, K. Kravtsov, M. P. Fok, and P. R. Prucnal, “A high per-
formance photonic pulse processing device,” Opt. Exp., vol. 17, no. 25,
pp. 22 767–22 772, Dec. 2009.

[16] K. Kravtsov, M. P. Fok, D. Rosenbluth, and P. R. Prucnal, “Ultrafast all-
optical implementation of a leaky integrate-and-fire neuron,” Opt. Exp.,
vol. 19, no. 3, pp. 2133–2147, Jan. 2011.

[17] M. P. Fok, Y. Tian, D. Rosenbluth, and P. R. Prucnal, “Asynchronous
spiking photonic neuron for lightwave neuromorphic signal processing,”
Opt. Lett., vol. 37, no. 16, pp. 3309–3311, Aug. 2012.

[18] M. Giudici, C. Green, G. Giacomelli, U. Nespolo, and J. R. Tredicce, “An-
dronov bifurcation and excitability in semiconductor lasers with optical
feedback,” Phys. Rev. E, vol. 55, no. 6, pp. 6414–6418, Jun. 1997.

[19] V. Z. Tronciu, H. J. Wunsche, M. Radziunas, and K. R. Schneider, “Ex-
citability of lasers with integrated dispersive reflector,” Proc. SPIE,
vol. 4283, pp. 347–354, Jul. 2001.

[20] B. Krauskopf, K. Schneider, J. Sieber, S. Wieczorek, and M. Wolfrum,
“Excitability and self-pulsations near homoclinic bifurcations in semicon-
ductor laser systems,” Opt. Commun., vol. 215, no. 4–6, pp. 367–379, Jan.
2003.

[21] E. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Ex-
citability and Bursting. Cambridge, MA, USA: MIT press, 2006.

[22] W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande,
“Solitary and coupled semiconductor ring lasers as optical spiking neu-
rons,” Phys. Rev. E, vol. 84, no. 3, pp. 036209-1–036209-8, 2011.

[23] W. Coomans, L. Gelens, L. Mashal, S. Beri, G. Van der Sande,
J. Danckaert, and G. Verschaffelt, “Semiconductor ring lasers as opti-
cal neurons,” in Proc. International Society for Optics and Photonics.,
Bellingham, WA, USA, 2012, pp. 84 321I–84 321I.

[24] A. Hurtado, K. Schires, I. Henning, and M. Adams, “Investigation of
vertical cavity surface emitting laser dynamics for neuromorphic photonic
systems,” Appl. Phys. Lett., vol. 100, no. 10, pp. 103 703–103 703, 2012.

[25] E. Izhikevich, “Which model to use for cortical spiking neurons?,” IEEE
Trans. Neural Netw., vol. 15, no. 5, pp. 1063–1070, Sep. 2004.

[26] C. Koch, Biophysics of Computation: Information Processing in Single
Neurons (Computational Neuroscience). Oxford, U.K.: Oxford Univ.
Press, 1998.

[27] W. Maass and C. M. Bishop, Eds., Pulsed Neural Networks. Cambridge,
MA, USA: MIT Press, 1999.

[28] G. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini,
and U. Keller, “Experimentally confirmed design guidelines for passively
q-switched microchip lasers using semiconductor saturable absorbers,”
JOSA B, vol. 16, no. 3, pp. 376–388, 1999.

[29] H. Wenzel, U. Bandelow, H. Wunsche, and J. Rehberg, “Mechanisms of
fast self pulsations in two-section dfb lasers,” IEEE J. Quantum Electron.,
vol. 32, no. 1, pp. 69–78, Jan. 1996.

[30] D. Nugent, R. Plumb, M. Fisher, and D. Davies, “Self-pulsations in
vertical-cavity surface emitting lasers,” Electron. Lett., vol. 31, no. 1,
pp. 43–44, 1995.

[31] J. Dubbeldam and B. Krauskopf, “Self-pulsations of lasers with saturable
absorber: Dynamics and bifurcations,” Opt. Commun., vol. 159, no. 4,
pp. 325–338, 1999.

[32] F. Koyama, “Recent advances of vcsel photonics,” J. Lightw. Technol.,
vol. 24, no. 12, pp. 4502–4513, 2006.

[33] S. Barbay, R. Kuszelewicz, and A. M. Yacomotti, “Excitability in a semi-
conductor laser with saturable absorber,” Opt. Lett., vol. 36, no. 23,
pp. 4476–4478, Dec. 2011.

[34] Y. Li, T. Wang, and R. Linke, “VCSEL-array-based angle-multiplexed op-
toelectronic crossbar interconnects,” Appl. Opt., vol. 35, no. 8, pp. 1282–
1295, 1996.

[35] D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele,
I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane
grating coupler for efficient butt-coupling between compact planar waveg-
uides and single-mode fibers,” IEEE J. Quantum Electron., vol. 38, no. 7,
pp. 949–955, Jul. 2002.

[36] D. Louderback, G. Pickrell, H. Lin, M. Fish, J. Hindi, and P. Guilfoyle,
“VCSELS with monolithic coupling to internal horizontal waveguides
using integrated diffraction gratings,” Electron. Lett., vol. 40, no. 17,
pp. 1064–1065, 2004.

[37] L. Coldren, S. Corzine, and M. Mashanovitch, Diode Lasers and Pho-
tonic Integrated Circuits, (Series Wiley Series in Microwave and Optical
Engineering). New York, NY, USA: Wiley, 2011.

[38] B. J. Shastri, C. Chen, K. D. Choquette, and D. V. Plant, “Circuit modeling
of carrier–photon dynamics in composite-resonator vertical-cavity lasers,”
IEEE J. Quantum Electron., vol. 47, no. 12, pp. 1537–1546, Dec. 2011.

[39] D. Nugent, R. Plumb, M. Fisher, and D. Davies, “Self-pulsations in
vertical-cavity surface emitting lasers,” Electron. Lett., vol. 31, no. 1,
pp. 43–44, Jan. 1995.

[40] G. E. Giudice, D. V. Kuksenkov, H. Temkin, and K. L. Lear, “Differen-
tial carrier lifetime in oxide-confined vertical cavity lasers obtained from
electrical impedance measurements,” Appl. Phys. Lett., vol. 74, no. 7,
pp. 899–901, 1999.

[41] M. Herrmann, J. A. Hertz, and A. Prugel-Bennett, “Analysis of synfire
chains,” Netw.: Comput. Neural Syst., vol. 6, no. 3, pp. 403–414, 1995.

[42] E. M. Izhikevich, “Polychronization: Computation with spikes,” Neural
Comput., vol. 18, no. 2, pp. 245–282, Feb. 2006.

[43] C. Eliasmith, “A unified approach to building and controlling spiking
attractor networks,” Neural Comput., vol. 17, no. 6, pp. 1276–1314, 2005.

[44] Y. Ikegaya, G. Aaron, R. Cossart, D. Aronov, I. Lampl, D. Ferster, and
R. Yuste, “Synfire chains and cortical songs: Temporal modules of cortical
activity,” Sci. Signall., vol. 304, no. 5670, pp. 559–564, 2004.
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