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Imperfect Quantum Photonic Neural Networks

Jacob Ewaniuk,* Jacques Carolan, Bhavin J. Shastri, and Nir Rotenberg*

Quantum photonic neural networks are variational photonic circuits that can
be trained to implement high-fidelity quantum operations. However,
work-to-date has assumed idealized components, including a perfect ! Kerr
nonlinearity. This work investigates the limitations of non-ideal quantum
photonic neural networks that suffer from fabrication imperfections leading to
unbalanced photon loss and imperfect routing, and weak nonlinearities,
showing that they can learn to overcome most of these errors. Using the
example of a Bell-state analyzer, the results demonstrate that there is an
optimal network size, which balances imperfections versus the ability to
compensate for lacking nonlinearities. With a sub-optimal !∕10 effective Kerr
nonlinearity, it is shown that a network fabricated with current state-of-the-art
processes can achieve an unconditional fidelity of 0.905 that increases to
0.999999 if it is possible to precondition success on the detection of a photon
in each logical photonic qubit. These results provide a guide to the
construction of viable, brain-inspired quantum photonic devices for emerging
quantum technologies.

1. Introduction

Quantum neural networks, brain-inspired quantum circuits,
harness artificial intelligence to enhance quantum information
processing. When driven with light, quantum photonic neural
networks (QPNNs) leverage the strengths of mature photonic
platforms,[1 ] including multiplexing, low latency, and ultra-low
operational powers already being exploited by conventional neu-
ral networks[2 ] and linear-optical quantum processors.[3 ] This
allows QPNNs to perform quantum state tomography,[4 ] act
as quantum simulators,[5,6 ] process[7 ] or reduce the noise[8 ] of
quantum states, or speed up tasks normally carried out by
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classical neural networks, such as im-
age recognition[9 ] and natural language
processing.[10 ]

An example of a QPNN circuit, a two-
layer network trained to act as a Bell-state
analyzer (BSA), is shown inFigure 1a.Here,
the connectivity and activation function for
the network are provided by linear, rect-
angular interferometer meshes (U)[11 ] and
single-site optical nonlinearities ("), respec-
tively. A BSA can distinguish between, or
create, all four highly entangled Bell-states,
and the addition of this nonlinearity ideally
increases the success probability of the cir-
cuit to unity[7 ] from 0.5 as possible solely
with linear optics in the absence of ancillary
photons.[12 ] The operation performed by the
QPNN in this example is therefore crucial to
entanglement swapping[13 ] and hence pro-
vides a route toward a deterministic quan-
tum repeater node,[14 ] a vital component of
a future quantum internet.[15 ]

Quantum photonic circuits are not ideal, and here we report
on the performance of imperfect QPNNs. Specifically, we con-
sider how propagation losses and imperfect optical nonlineari-
ties affect the fidelity of the QPNN, using the example of a BSA
to benchmark our results. As shown in Figure 1b,c, we find that
even networks with weak nonlinearities can vastly outperform
those based on (ideal) linear optics. In Figure 1c, we observe
that using state-of-the-art waveguide fabrication (as described in
Section 2) and a perfect (!) two-photon nonlinearity, ten BSA
nodes made from two-layer QPNNs can be applied in series with
a success rate of 72%. Surprisingly, this rate is only decreased
to 61%, for a much weaker (!∕4) two-photon nonlinearity if a
third (lossy) layer is added. Moreover, if each operation is con-
ditioned on the measurement of two photons, the conditional
success rate of ten nodes becomes 99.99999% and 99.9% for !
and !∕4, respectively. In what follows, we unravel the depen-
dence on loss, effective nonlinearity, and network size, providing
a methodology for the design of optimal QPNNs with non-ideal
components.

2. Network Architecture and Nonidealities

The architecture of an imperfect QPNN is the same as that of
an ideal network, and is thus designed to operate on dual-rail
encoded photonic qubits.[7 ] Each layer consists of a mesh of
tunable Mach–Zehnder interferometers (MZIs) with two con-
trollable phase shifters (", #), as shown in the inset to Figure 1a.
The interferometer mesh can be programmed to perform any
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Figure 1. An imperfect QPNN-based BSA. a) An exemplary two-layer QPNN consisting of meshes (U) of parameterized Mach–Zehnder interferometers
(inset) separated by single-site nonlinearities ("). The network features two dual-rail encoded qubits, one where a single photon occupies the upper
two spatial modes, the other in the lower two modes. Here, realistic losses (0.3 dB cm−1) and errors in the 50 : 50 directional couplers (5.08%), as
well as a weak !∕4 nonlinear phase shift are assumed. The network was trained to act as a BSA according to the truth table shown, with a resultant
unconditional fidelity of 0.825. As an example, the network is colored to portray the propagation of the photons through the network when the |Φ+⟩
Bell-state is incident. The colors represent the probabilities that there are zero, one, or two photons in each spatial mode at each part of the network
(colorbar), showing the evolution of the state as it propagates through the circuit. For this example, there is an 82.5% chance of measuring the correct
|00⟩ target state. b) Probabilities of measuring a state |$out⟩ when a state |$in⟩ is fed into the network shown in (a). c) Comparison between the success
rates of ideal linear-optical and imperfect QPNN-based BSAs when up to ten are operated in series. The linear-optical BSA has a maximal unconditional
fidelity of 0.5[12 ] and is compared to imperfect QPNNs with varying amounts of layers and effective nonlinear phase shifts (%), as explained in the main
text. The pink marker highlights the success rate for the network shown in (a).

arbitrary linear unitary transformation U(",#) on the spatial
modes of the photons.[11 ] Single-site nonlinearities, of strength
%, are placed between consecutive layers. In Section S1, Support-
ing Information, we provide further details on the construction
of the system transfer function.
The components of linear photonic networks are not perfect,

and various techniques have been developed to mitigate the ef-
fects of these imperfections. Specifically, both imperfect split-
ting ratios of the directional couplers (DCs) that form the MZIs
and imperfectly calibrated phase shifters lead to errors that can
be mitigated by optimizing the circuits after fabrication.[16–18 ] In
contrast, we account for these errors and those due to imbalanced
photon loss or imperfect nonlinearities by training the varia-
tional parameters {"i,#i} in situ, as would be done on-chip, post-
fabrication.
We model a realistic linear mesh by allowing each element

to uniquely suffer from slightly different imperfections, result-
ing in unbalanced, photon-path-dependent errors. We define the
transmittance of each DC as t, randomly selected from a nor-
mal distribution with a mean of 50% and standard deviation of
5.08%, matching experimental results of a broadband DC fabri-
cated for silicon-on-insulator (SOI) platforms.[19 ] Likewise, prop-
agation losses, where photons are scattered out of the circuit due

to, for example, surface roughness, or are absorbed by the waveg-
uides, are parameterized by the fraction of light lost,

& = 1 − 10−
&WG!
10 (1)

for an element of length ! and propagation losses in dB per unit
length &WG. These losses depend on the platform upon which
the photonic circuit is constructed,[20–26 ] which additionally de-
termines the size of each photonic element. In our analysis, we
randomly select &WG values for each individual component from
a normal distribution with a standard deviation of 6.67% of the
mean, as is the case for current state-of-the-art photonic circuits
built on SOI, which suffer from &WG = 0.3 ± 0.02 dB cm−1 at
1550 nm.[26 ] For this value of &WG, the loss per MZI, of length
!MZI = 287 μm, is thus 0.009 dB on average. More information
on the inclusion of fabrication imperfections, and all characteris-
tic lengths, can be found in the Experimental Section and Section
S1, Supporting Information.
In our architecture, as in previous realizations,[7 ] a Kerr non-

linearity, resolved in the Fock basis as,

"(%) =
∑
n

exp
[
in(n − 1)

%
2

]
|n⟩⟨n| (2)
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is assumed, where in the ideal case % = ! such that a sin-
gle photon passing through will experience no phase change
while two photons will undergo a ! phase change. To date, a
! Kerr nonlinearity has yet to be observed at the single-photon
level; however, this efficiency has been reached by other non-
linearities, such as those based on electromagnetically induced
transparency[27 ] or the saturation[28 ] of atoms. While these en-
able neural networks capable of quantum state tomography[29 ] or
image recognition[30 ] respectively, neither are scalable nor com-
patible with most quantum information processing applications
since they lead to photon loss. It is, however, likely that in the near
future, efficiencies approaching ! will be demonstrated through
the coherent chiral scattering of photons from single quantum
emitters,[31 ] by using integrated nanophotonic cavities designed
to address this need,[32–34 ] or with dispersion-engineered tempo-
ral trapping.[35,36 ] Hence, we consider single-site Kerr nonlinear-
ities but examine the performance of the QPNN also in the im-
perfect scenario where % ≲ !.
In sum, the total transfer function for an L-layerQPNN is given

by

S = U
(
"L,#L

)
⋅
L−1∏
i=1

"(%) ⋅U
(
"i,#i

)
(3)

This transfer function will act on any input state to produce an
actual output state |$ (i)

out,act⟩ = S|$ (i)
in ⟩, which is compared to the

ideal output state |$ (i)
out⟩ to determine the unconditional fidelity

for that input–output pair

 (unc)
i =

||||
⟨
$ (i)
out
|||S
|||$

(i)
in

⟩||||
2

(4)

The complete unconditional fidelity, the chance that the network
provides the correct output state for any given input state without
preconditions, is then found by averaging over allK input–output
pairs according to

 (unc) = 1
K

K∑
i=1

 (unc)
i (5)

Conversely, we can calculate the unconditional infidelity (i.e., net-
work error) according to  (unc) = 1 −  (unc), which we minimize
in training the QPNN, using the local gradient-free BOBYQA
nonlinear optimization algorithm,[37 ] as available in the NLopt
library.[38 ] Further details on network optimization are provided
in the Experimental Section.
The success of the network may be conditioned on the detec-

tion of photons only in ports which abide by the dual-rail encod-
ing scheme, as in this case we know that a logical output was pro-
duced. For the BSA shown in Figure 1a, this means that a single
photon was detected in one of the top twomodes and the other in
the bottom two modes. We call this the conditional fidelity  (con),
each ith term of which is related to the unconditional fidelity by
the probability that the network operation results in a compu-
tational basis state (that is, no photons are lost and each logical
photonic qubit contains a single photon at the output)  (cb) by

 (unc)
i =  (con)

i  (cb)
i (6)

In the Experimental Section, we provide the expressions used to
calculate these conditional measures. For a network operation
that requires detection, such as the BSA and not, for example,
the realization of a quantum logic gate for quantum computa-
tion,  (cb) gives the probability that the network successfully per-
formed its task, while  (con) provides the quality of the result; in
practice, one may optimize on either the conditional or uncon-
ditional infidelities, depending on the task under consideration.
In the following, we train solely on the unconditional, however,
we provide results from optimizing the conditional infidelity in
Section S2, Supporting Information.

3. Correcting Imperfect Linear Interferometer
Meshes

We begin to consider the effects of imperfections on QPNNs by
holding the nonlinearity at the ideal value (% = !) but introduc-
ing DC splitting ratio variations and unbalanced photon loss as
described above. The resultant unconditional infidelity of a BSA
for two to six-layer QPNNs with losses ranging from 0.001 to 3
dB cm−1, as a function of training iterations, is shown in Fig-
ure 2a–c. Each case is repeated 50 times, resulting in plateaus of (unc) that increase in value for increasing losses, as expected. In-
terestingly, for two-layer BSAs, we observe a large spread in the
final  (unc), particularly for low-loss networks (cf., blue and pur-
ple curves in Figure 2a), indicating that the final performance of
the QPNN is largely dictated by imbalance due to imperfect DCs.
Addingmore layers to the network, as in Figure 2b,c, reduces this
spread, showing that larger QPNNsmay learn to correct for these
errors and more often reach optimal performance.
This is reflected in Figure 2d–f, which show the unconditional

fidelity  (unc) as a function of waveguide loss for different sized
networks. Here, we compare the in situ trained QPNNs of Fig-
ures 2a–c, denoted by the symbols, to the case where the network
is trained offline. Offline training means that a perfect network
was trained, then losses and DC errors were subsequently added
to the solution. This was repeated 50 times for each &WG, selecting
different random imperfections at each repetition, with themean
given by the solid-black curve and standard deviation by the gray
region.When trained in situ, the QPNN learns to overcome these
imperfections as is seen by the convergence toward loss-limited
performance (see Experimental Section for more information on
network training and the loss limit). This is more apparent for
larger networks, where the fidelity of those trained offline sig-
nificantly reduces due to increased losses and DC errors, while
those trained in situ maintain and even increase  (unc).
The balance between fabrication imperfections and network

size, as a function of losses, is summarized in Figure 2g. Here,
we observe that for state-of-the-art losses (&WG = 0.3 dB cm−1)
or worse, the unconditional fidelity decreases as expected when
more layers are added to the network. When &WG = 0.3 dB cm−1, (unc) ≥ 0.905 (0.904), where the bracketed result is the lower
bound of the 95% confidence interval, even for a six-layer QPNN,
demonstrating that high-efficiency performance is possible on re-
alistic state-of-the-art systems. Conversely, a more complex evo-
lution is seen in Figure 2g for 0.01 dB cm−1 (0.0003 dB per MZI)
losses or less, where there exists an optimal network size other
than two layers. Losses at 0.01 dB cm−1 are similar to those of the
silicon nitride platform for 1550 nm, reported as low as 0.007 dB
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Figure 2. Performance of a QPNN-based BSA suffering from fabrication imperfections. The unconditional infidelity (unc) of a) two, b) four, and c)
six-layer networks are shown as a function of the training iteration for increasingly lossy networks. In each pane, the results of 50 optimization trials are
displayed, with clear plateaus visible in (unc) that increase with the losses. In each case, only trials that result in infidelity at or below those achieved by
offline training (colored ticks in (a–c), shaded regions in (d–f)) are considered successful (shaded blue region shows an example for 0.001 dB cm−1). The
unconditional fidelity  (unc) of d) two, e) four, and f) six-layer networks are plotted with respect to the average losses &WG, with colored symbols (shaded
regions) corresponding to the mean (95% confidence interval) of a logarithmic normal distribution fitted to the successful trials of (a–c) (see Section S3,
Supporting Information, for more details). These points are seen to lie on the (dashed) loss limit curve, where the performance of the network is only
limited by uniform photon loss (assumes perfect DCs; see Experimental Section for additional details), in contrast to networks that are trained offline
(solid black curves and shaded gray regions), demonstrating the ability of QPNNs to learn to overcome imperfections. g) Unconditional fidelity  (unc),
h) conditional fidelity  (con), and i) computational basis probability  (cb), as a function of L for the QPNNs trained in situ, where the mean (symbols)
and 95% confidence intervals (shaded regions in (g,i), error bars in (h)) are determined via the same method as (d–f). The losses per MZI, for each &WG
and !MZI = 287 μm, are displayed on the left side of the colorbar.

cm−1,[39 ] but more typically near 0.01 dB cm−1.[40–42 ] In this low-
loss case (&WG = 0.01 dB cm−1),  (unc) first increases from 0.993
(0.949) to 0.998 (0.997) by adding two layers to the base size, as
the network is better able to account for imperfections. The un-

conditional fidelity then only slightly decreases to 0.996 (0.996)
as the network grows to seven layers. That is, near-deterministic
QPNN-based quantum elements such as BSAs will be realistic in
the near-future as platform losses continue to decrease.
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Figure 3. Performance of imperfect QPNN-based BSAs with sub-optimal (% ≲ !) nonlinearities and state-of-the-art (&WG = 0.3 dB cm−1) losses. The
unconditional fidelity  (unc) of a) two, b) three, and c) four-layer networks is shown with respect to the effective nonlinear phase shift %, showing both
offline (solid black curves, shaded grey regions) and in situ (colored triangles) trained networks, and the loss limit (dashed line), as in Figure 2. In situ
results include only the best-case training trials, where triangles (error bars) show the mean (95% confidence intervals) of a beta distribution fit to the
maximal unconditional fidelity plateau (see Sections S3 and S4, Supporting Information, for statistical analysis details and an example of this plateau).
Shaded green regions act as a visual aid to highlight the % where near-loss-limited performance is achieved. The d) unconditional fidelity  (unc), e)
conditional fidelity  (con), and f) computational basis probability  (cb) are plotted for each % denoted on the colorbar, for networks of up to seven layers.
All means (triangles) and 95% confidence intervals (error bars) were determined in the samemanner as the best-case in situ results of (a–c). Connecting
dotted lines serve only as a visual aid.

The situation is even more promising if the success of the net-
work is preconditioned on detection in the computational basis,
as is shown in Figure 2h,i. Here we present (con) and (cb) for dif-
ferent sized QPNNs, and for differing &WG. Even for the lossy net-
works, where &WG = 2 dB cm−1 (0.06 dB perMZI), (con) remains
above 0.9999 (0.9888) for all L ≤ 7, while for state-of-the-art losses
this conditional fidelity does not drop below 0.999999 (0.999784)
for 3 ≤ L ≤ 7, as we observe in Figure 2h. Although the networks
are trained to optimize their unconditional fidelity, adjusting the
variational parameters to account for photon-path-dependent er-
rors in the process, these near-unity results demonstrate that the
conditional fidelity is not significantly decreased for any network
size (see results from optimizing  (con) in Section S2, Supporting
Information). In fact, as shown in Figure 2i, it is mainly the rate
at which the QPNN produces a logical output that is affected by
an increase in network size, showing the potential of even lossy
networks if fault-tolerant protocols are used.

4. Embracing Weak Nonlinear Interactions

Having studied the effect of fabrication errors on network perfor-
mance, we now turn to the consequences of sub-optimal nonlin-
earities. Assuming state-of-the-art losses (&WG = 0.3 dB cm−1),
we vary the effective nonlinear phase shift % from the ideal !
to !∕100 and attempt to train QPNNs of different sizes to act
as BSAs (see Section S4, Supporting Information for exemplary
training traces, cf. Figure 2a–c). For each network size and
effective nonlinearity, we attempt to train 200 QPNNs, showing
the results in Figure 3. Figure 3a–c depicts the highly non-trivial
dependence of  (unc) on the effective nonlinearity %. When
the QPNN is trained offline,  (unc) increases monotonically
with %, as would be the case for a quantum-optical Fredkin
gate-based BSA[43–45 ] (see Section S4, Supporting Information,
for additional information). Conversely, a QPNN can be trained
to account for the weak nonlinearity, in which case it can vastly
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outperform this expectation. Considering a two-layer network
(Figure 3a), we observe a strikingly different % dependence when
comparing the best-case in situ trained networks (triangles;
see Section S3, Supporting Information, for statistical analysis
information) to those trained offline. We observe that networks
trained in situ can reach the loss limit with sub-optimal non-
linearities, in addition to fabrication imperfections. Specifically,
we observe optimal performance of two-layer QPNNs when
% = !∕2 in addition to !. Moreover, as can be seen in Figure 3a,
near-optimal performance is reached for a domain of % centered
at !∕2, providing a pathway to robust QPNN-based BSAs with-
out the need for a perfect Kerr nonlinearity. It must be noted,
however, that operating with weaker nonlinearities decreases
the probability that the QPNN converges at the loss limit during
training, as is shown in Section S4, Supporting Information.
For all %, a QPNN trained in situ learns how to account for

weak nonlinearities and thus approach the loss limit. These ca-
pabilities improve as redundancies are added via an increase in
network size, as visually evident across Figure 3a–c and sum-
marized in Figure 3d. By adding a single additional (lossy) layer,
QPNNswere trained to within 1.13%of the unconditional fidelity
achieved with the ideal nonlinearity, 0.951 (0.950) at % = !, and
within 1.15% of the loss limit, 0.952, for all % ≥ !∕4. Even net-
works with nonlinearities as weak as % = !∕10 approach the loss
limit at six layers, in contrast to the case of !∕100 where  (unc)

increases only to 0.528 (0.528) at seven layers from 0.499 (0.498)
at two layers, essentially acting as a linear-optical BSA.[12 ] Train-
ability also improves with increased network size, as it becomes
easier for the QPNN to find optimal solutions (see Section S4,
Supporting Information, for more details).
In Figure 3e,f, the conditional fidelity and computational ba-

sis probability are shown as a function of L ≤ 7, for differing
%. In contrast to the case where photon losses were varied (c.f.
Figure 2), we observe that the behavior of  (con) strongly de-
pends on %. While QPNNs with % = ! and !∕2 operate with (con) ≥ 0.9999 (0.9998) for all L ≤ 7, networks with nonlineari-
ties near !∕4 and 3!∕4 require at least three layers to reach this
level, while at !∕10, six layers are needed. For all nonlinearities
and network sizes, (cb) is within 0.009 (0.031) of loss-limited per-
formance, as seen in Figure 3f, and as expected for a QPNN suf-
fering from state-of-the-art losses (cf. Figure 2d–f,i). Altogether,
this demonstrates that for each combination of fabrication im-
perfections and effective nonlinearity, there exists an optimal net-
work size that maximizes  (unc). While adding layers will always
tend to increase  (con), a balance must be struck with the expo-
nential decrease in  (cb). In the Section S5, Supporting Informa-
tion, we demonstrate a QPNN trained to generate Greenberger–
Horne–Zeilinger states, and show that this remains true beyond
the BSA application.

5. Discussion

We have shown that high-fidelity operation is possible in imper-
fect quantum photonic neural networks based on non-ideal Kerr
nonlinearities and realistic linear interferometer meshes. Since
propagation through these networks leads to inevitable photon
loss, their unconditional fidelity ceiling tends to decrease with
increasing size. While this loss limit is unavoidable, these net-
works are able to learn to manage additional errors from non-

uniform losses and directional coupler splitting ratio variations,
often demonstrating increased fidelity with the addition of im-
perfect layers. Crucially, we have shown that weak nonlineari-
ties, which are mere fractions of the ideal, are sufficient for near-
optimal network performance. Even as these sub-optimal non-
linearities are realized,[31,32 ] the desired phase change will likely
be accompanied by wave-packet distortions,[46,47 ] and although
complex solutions based on dynamically-coupled cavities[33,34 ] or
temporal confinement[35,36 ] have been proposed, it remains an
open question if, instead, a QPNN may learn to overcome them
in much the same way it does fabrication imperfections. Already
in the work presented here, QPNNs offer a fascinating view of
the intricate balance between loss, imperfect photon routing and
weak nonlinearity, which we have unraveled to demonstrate how
each combination leads to an optimal network geometry. Under-
standing and respecting this balance will be important, in the
near future, as QPNNs are designed and fabricated.
It is now clear why QPNNs far outperform linear-optical

networks. Even with a weak !∕4 effective nonlinearity, they
can learn to surpass the 0.5 unconditional fidelity possible with
perfect linear optics,[12 ] achieving  (unc) = 0.820 (0.809) at two
layers (see Figures 1b and 3a), which grows to 0.951 (0.949)
with an additional layer (see Figure 3b). At six layers, loss-
limited operation,  (unc) = 0.905 (0.904), can be achieved with
nonlinearities as weak as !∕10. Returning to Figure 1c, which
summarizes the success rate of operating N BSAs in series,
as would be necessary to connect quantum repeater nodes by
entanglement swapping,[13,14 ] the performance benefits offered
by QPNNs becomemore apparent. While ten consecutive perfect
linear-optical BSAs have a success rate of just 0.1%, six-layer,
!∕10 nonlinearity QPNNs reach 36.9%, and three-layer, !∕4
networks achieve 60.5%.
Preconditioning the success of each QPNN-based BSA on the

detection of two photons in the correct ports, as would be the
case for generating cluster states from fusion gates,[48 ] allows the
much higher conditional fidelities to be leveraged. While  (con)

for a perfect linear-optical ten-BSA sequence remains at 1, im-
perfect QPNNs of !∕4 (three layers) and !∕10 (six layers) nonlin-
earities reach 0.999 (0.997) and 0.99999 (0.99996), respectively.
Given that these conditional fidelities are all near-unity, the rather
large variations to  (unc) seen above can be attributed to the op-
erational rate of the circuits (cf. Equation (6)), which are 369×
improved when the perfect linear-optical BSAs are replaced by
even six-layer, !∕10 QPNNs. Hence, imperfect QPNNs are likely
to play a key role in emerging large-scale quantum technologies.

6. Experimental Section
Modeling Fabrication Imperfections: An ideal MZI, as displayed in the

inset to Figure 1a, could be described by a 2 × 2matrix,

T(ideal) = 1
2

(
1 −i
−i 1

)(
ei2# 0
0 1

)(
1 i
i 1

)(
ei" 0
0 1

)

= ei#
(
ei" cos # − sin #
ei" sin # cos #

)
(7)

as is commonly found in the literature,[11,17 ] up to the arrangement of
components specified here. To model a realistic MZI, two types of imper-
fections: photon loss due to propagation and an imperfect splitting ra-
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tio of the nominally 50 : 50 DCs were included. Imperfect phase shifter
calibration was neglected as a QPNN trained in situ would intrinsically
learn the phase shifts that account for these errors. A photonic element
of length ! introduced the probability & that a photon was lost via propa-
gation through it. The characteristic lengths used in the simulations were
!MZI = 287 μmand !PS = 50 μm. By Equation (1), & depends on the prop-
agation losses per unit length, &WG, selected from a normal distribution
with a width of 6.67%, corresponding to the state-of-the-art experimen-
tal results for SOI.[26 ] For each MZI, an individual & was computed, then
applied through multiplication by the 2 × 2matrix

(√
1 − & 0
0

√
1 − &

)
(8)

In Section S1, Supporting Information, further details are given for the
inclusion of these non-uniform losses, including how the characteristic
length (!) of each photonic element was determined, and how the lack of
unitarity was dealt with in the simulations. Similarly, each imperfect DC
had an individual transmittance t that was taken from a normal distribu-
tion centered at 0.5 with a standard deviation of 0.0508, matching exper-
imental results of a broadband DC fabricated for SOI platforms.[19 ] For a
given t, the corresponding 2 × 2 transformation of the DC is,

( √
t ±i

√
1 − t

±i
√
1 − t

√
t

)
(9)

Altogether, these result in a 2 × 2 transformation describing a realistic
MZI,

T(real) =
(√

1 − & 0
0

√
1 − &

)( √
t2 −i

√
1 − t2

−i
√
1 − t2

√
t2

)(
ei2# 0
0 1

)( √
t1 i

√
1 − t1

i
√
1 − t1

√
t1

)(
ei" 0
0 1

)
,

=
√
1 − &

( √
t1t2ei2#ei" +

√
(1 − t1)(1 − t2)ei" i

√
t1(1 − t2)ei2# − i

√
t2(1 − t1)

−i
√
t2(1 − t1)ei2#ei" + i

√
t1(1 − t2)ei"

√
(1 − t1)(1 − t2)ei2# +

√
t1t2

)
(10)

In Section S1, Supporting Information, the regimes in &WG were analyzed,
L where the imperfect DC splitting ratios are dominant, and vice versa.

Network Optimization and Training Processes: A QPNN was trained to
perform a mapping between a set of K input–output state pairs |$ (i)

in ⟩ →
|$ (i)

out⟩. For the QPNN-based BSA, the training set was provided in the
computational basis in Figure 1a. Since dual-rail encoding was applied,
|0⟩ (|1⟩) in the computational basis was equivalent to |10 > (|01⟩) in the
Fock basis for the two spatial modes that realize the photonic qubit.

The unconditional infidelity of the network, (unc) = 1 −  (unc) (see
Equations (4) and (5) for  (unc)), was minimized to facilitate the opti-
mization process. The variational parameters, {"i,#i} for each layer in the
network, were selected randomly from a uniform distribution upon initial-
ization. If the parameters were instead selected to initialize each linear
mesh as a Haar random unitary matrix,[49 ] convergence speed might be
improved.[50 ] Then, the local, gradient-free BOBYQA nonlinear optimiza-
tion algorithm[37 ] (available from the NLopt library[38 ]) was applied until
the absolute change in infidelity was less than some threshold chosen em-
pirically based on the available computational resources. This algorithm
constructed a quadratic approximation to the infidelity and thus does not
require an analytical gradient. Gradient-free optimization was deemed per-
tinent since it was unlikely that the internal state of the network, as would
be necessary for backpropagation methods, would be accessible during
in situ training.[7 ] It was, however, relevant to note that recent works had
demonstrated the efficacy of performing gradient descent on average by
perturbing all parameters toward a randomdirection,[51 ] and of employing

physics-aware training where backpropagation was applied to controllable
physical systems.[52 ]

In contrast to in situ training, as described in themain text, offline train-
ing was conducted by training a QPNN with idealized components, then
adding fabrication imperfections, and if necessary, adjusting the effective
nonlinearity (cf. Section 4). Due to the loss and DC splitting ratio varia-
tions, such imperfections were added to an idealized solution in 50 (200)
repetitions in Figure 2 (3), matching the number of in situ trials conducted.
From these results, an in situ trial was deemed successful if it achieved
an optimized unconditional infidelity at or below the worst-case of offline
training (mean minus standard deviation). Only successful optimization
trials were considered for further analysis. Similarly, the loss limit is com-
puted by adding imperfections to an idealized solution, however, losses
are assumed to be completely uniform at &WG, and the DC splitting ratios
are all 50 : 50.

All simulations were conducted on the Frontenac Platform computing
cluster offered by the Centre for Advanced Computing at Queen’s Univer-
sity. The accompanying code was written in Python (version 3.10.2) us-
ing Numpy (version 1.22.2) and NLopt (version 2.6.1). Cython (version
0.29.30) was used to translate performance-sensitive operations to C to
improve computation runtime. It was identified in Section S1, Supporting
Information, where computational complexity arises when constructing
the system transfer function.

Conditional Measures: As for the unconditional fidelity, the conditional
fidelity could be found by projecting the actual output state, |$out,act(i)⟩ =
S|$ (i)

in ⟩, onto the computational basis, CB, and finding its overlap with the

ideal output |$ (i)
out⟩. Averaging over all K input–output pairs, this is written

as,

 (con) = 1
K

K∑
i=1

||||
⟨
$ (i)
out

|||A
(i)S|||$

(i)
in

⟩||||
2

(11)

where,

A(i) =
[ ∑
|x⟩∈CB

|||
⟨
x|||S

|||$
(i)
in

⟩|||
2
]− 1

2

(12)

normalizes the ith S|$ (i)
in ⟩ to the computational basis. Similarly, the prob-

ability of measuring an output in the computational basis is

 (cb) = 1
K

K∑
i=1

∑
|x⟩∈CB

|||
⟨
x|||S

|||$
(i)
in

⟩|||
2

(13)

The ith terms of Equations (11) and (13) could be multiplied to yield Equa-
tion (4), which follows simply from the fact that the ith term of Equa-
tion (13) can be expressed as (A(i))−2.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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S1. CONSTRUCTING THE SYSTEM TRANSFER FUNCTION FOR AN IMPERFECT QUANTUM
PHOTONIC NEURAL NETWORK

The quantum photonic neural network (QPNN) architecture, as illustrated in Fig. 1a of the main manuscript, can
be described via operation in the discrete N =

�n+m�1
n

�
-dimensional Fock basis as generated by the m spatial modes

of n photons [S1]. Photonic qubits are dual-rail encoded such that n = 2 photons and m = 4 modes are required to
establish the two-qubit inputs of the QPNN-based Bell-state analyzer (BSA). Explicitly, the set of two-photon Fock
basis states is expressed as,

{|2000i , |1100i , |1010i , |1001i , |0200i , |0110i , |0101i , |0020i , |0011i , |0002i} , (S1)

where the subset,

{|1010i , |1001i , |0110i , |0101i} , (S2)

represents the computational basis such that |10i = |0ilogic, |01i = |1ilogic.
The ith layer of a QPNN consists of a linear unitary transformation Ũ(�i,✓i) that is modelled according to the

encoding scheme of Ref. [S2]. This scheme involves a rectangular mesh of Mach-Zehnder interferometers (MZIs),
each corresponding to a unitary transformation Tp,q(�, ✓) on modes p, q, and a set of single-mode phase shifts at the
output of the mesh as described by the diagonal unitary D. In terms of these transformations, Ũ(�i,✓i) is defined
as,

Ũ(�i,✓i) = D

Y

(p,q)2R

Tp,q(�, ✓), (S3)

where R is a sequence of the m(m � 1)/2 two-mode transformations, and �, ✓ are elements of the corresponding
vectors �i,✓i that are selected according to the sequence [S2]. This m x m unitary transformation correctly describes
the photonic circuit at layer i, however, state propagation is resolved into the N -dimensional basis of Eq. S1 in the
simulations, where N 6= m : n > 1. Thus, a multi-photon unitary transformation, U = �(Ũ), is applied as defined by
Eq. 6 of Ref. [S3]. This transformation requires the calculation of N2 permanents of n⇥n matrices, making it by far
the most computationally demanding process in the simulations [S1]. Between consecutive QPNN layers, single-site
Kerr nonlinearities are assumed. These components generate an N x N diagonal unitary of the form,

⌃(') =
X

n

exp
h
in(n� 1)

'

2

i
|ni hn| , (S4)

where ' is the e↵ective nonlinear phase shift [S1]. By left-multiplying each transformation from the input to the
output of the network architecture (c.f. Fig. 1a of the main manuscript), the system transfer function is defined as,

S = U(�L,✓L) ·
L�1Y

i=1

⌃(') ·U(�i,✓i), (S5)

for a QPNN of L layers.

⇤ jacob.ewaniuk@queensu.ca

mailto:jacob.ewaniuk@queensu.ca


2

Additional Details on the Fabrication Imperfection Model

Waveguide propagation losses are proportional to waveguide length [S4]. Thus, the characteristic lengths of the
components in the QPNN architecture were identified as displayed in Fig. S1a. The single-site Kerr nonlinearities

FIG. S1. (a) Diagrammatic representation of the characteristic lengths identified for the propagation loss model of an imperfect
QPNN. Each component of length ` contributes the probability ↵ of losing a photon. The flat sections adjacent to a MZI
must share its length for the circuit to be balanced. (b) Matrices, with color-coded elements, constructed to apply losses in the
simulations for the components shown in (a).

were assumed to be much shorter in length than the elements of a MZI mesh such that their losses were deemed
negligible. To determine the characteristic lengths, we considered components fabricated for 1550 nm operation in
silicon-on-insulator (SOI) that do not contribute excess loss. Specifically, the chosen broadband directional coupler
(DC), with 5.08% splitting ratio variations as discussed in the main text, has a waveguide length of 93.342 µm when
two 10 µm bends (input and output) are added to the design of Ref. [S5]. The phase shifters were modelled after
the 50 µm-long thermo-optic indium tin oxide design of Ref. [S6], where < 0.01 dB insertion losses were reported
(negligible excess loss). Since each MZI has two phase shifters and two DCs, the characteristic lengths are defined
as `MZI = 287 µm and `PS = 50 µm respectively. These lengths are in agreement with those reported as typical in
Ref. [S4] for SOI thermo-optic phase shifters and DCs when bend radii are chosen such that excess losses are negligible.
It is necessary to reiterate that all fabrication imperfections are treated on a component-by-component basis in the
simulations. This is shown diagrammatically in Fig. S2, where each DC throughout the network has an individual
splitting ratio (see Fig. S2a) and each MZI, output phase shifter contributes a unique amount of loss (see Fig. S2b).

When losses are included (↵WG 6= 0) in the QPNN simulations, the MZI transformation (c.f. Eq. 10 in the main
manuscript) becomes non-unitary, and each linear transformation U(�i,✓i) follows. When applied to a normalized
state resolved in the Fock basis, the resultant state lacks normalization. At the output of the network, the ‘missing’
coe�cient that would yield a normalized state can be regarded as attached to some state |✏lossi, appended to the basis
of Eq. S1, that accounts for all potential output states where n < 2 across the four spatial modes of interest. For our
purposes, it is su�cient that the loss model accurately reduces the probability of measuring a state in the ideal Fock
basis (Eq. S1), and thus that of measuring the target output state, without fully describing |✏lossi.

The DC splitting ratio variations are independent of propagation losses. Thus, there exists a regime where the
losses are small enough such that the splitting ratio variations become the dominant imperfection. This is evident
in the main manuscript (Fig. 2g) when considering the increase to the unconditional fidelity F (unc) from L = 2 to
L = 4 for ↵WG  0.01 dB/cm. It is more explicitly shown in Fig. S3, where F (unc) is plotted for QPNNs of 2 to 6
layers. The shaded blue region highlights the regime where the DC splitting ratio variations are dominant. In this
regime, an increase to the size of the QPNN does not yield a decrease in F (unc) for those trained in situ. In fact,
the unconditional fidelity often increases due to the additional parameters that can be used to learn how to optimize
around the fabrication imperfections. This further explains why F (unc) decreases for QPNNs trained o✏ine, regardless
of ↵WG. Conversely, in the loss-dominant regime (shaded green region), additional layers only hinder the performance
of the QPNN, given that it has ideal nonlinearities (' = ⇡) in this case, regardless of in situ or o✏ine training.
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FIG. S2. Diagrammatic representation of varying fabrication imperfections throughout a QPNN, where the dotted box shows
that DCs are contained within each MZI of a given linear mesh. (a) Example directional coupler splitting ratios selected
randomly from a normal distribution with a mean (standard deviation) of 50% (5.08%). (b) Example waveguide propagation
losses selected randomly from a normal distribution with a mean (standard deviation) of 0.3 dB/cm (0.02 dB/cm). The colorbar
also displays the loss per MZI, calculated as ↵WG`MZI where `MZI = 287 µm.

FIG. S3. Identifying dominant QPNN fabrication imperfections. The unconditional fidelity is plotted for QPNNs of 2, 4, and
6 layers, with ideal nonlinearities (' = ⇡), as a function of losses. Both in situ and o✏ine-trained QPNNs feature loss and
splitting ratio variations that match the model applied in the main manuscript. The shaded blue and green regions were added
as a visual aid to show the domains in ↵WG where DC splitting ratio variations and non-uniform losses dominate, respectively.
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S2. OPTIMIZING THE CONDITIONAL FIDELITY

In Fig. S4a, we provide training traces for imperfect 2-layer QPNNs with weak nonlinearities (' . ⇡), assuming
state-of-the-art losses (↵WG = 0.03 dB/cm), when minimizing the conditional infidelity, 1 � F (con), rather than the
unconditional. All training procedures were chosen to match those explained in the main manuscript. Thus, the

FIG. S4. Training imperfect 2-layer QPNNs with state-of-the-art losses (↵WG = 0.03 dB/cm) and weak nonlinearities to
optimize conditional fidelity F (con). (a) Training traces for QPNNs, with e↵ective nonlinear phase shifts as labelled in the
colorbar, when the conditional infidelity is minimized. (b) Conditional fidelities F (con), unconditional fidelities F (unc), and
computational basis probabilities P(cb) for QPNNs of varying e↵ective nonlinear phase shifts ' when trained to optimize F (con)

and F (unc) respectively. Error bars show the 95% confidence intervals of a beta distribution (see Sec. S3 for more details).

absence of plateaus for ' � ⇡/2 may be attributable to sub-optimal training parameters. The QPNN performance
measures in this case are compared to those achieved when minimizing the unconditional infidelity, as in the main
manuscript, in Fig. S4b. In general, when a QPNN is trained to minimize its conditional infidelity, it is able to achieve
multiple order-of-magnitude improvements at the expense of significantly reduced operational e�ciency. Taking
' = 3⇡/4 as an example, the conditional fidelity increases from 0.851 (0.846) to 0.998 (0.998) while the probability
of yielding a logical output decreases from 0.964 (0.957) to 0.312 (0.312), correlating to a decrease in unconditional
fidelity from 0.820 (0.809) to 0.311 (0.311), where the bracketed results show the lower bounds of 95% confidence
intervals. Overall, if an application prioritizes F (con), imperfect QPNNs have the versatility to meet this desire.

S3. STATISTICAL ANALYSIS

In all imperfect QPNN simulations, there are trials where the optimization process reaches a local minimum and
converges to a solution that can be deemed a failure. To eliminate these trials from the analysis of the network
performance measures, successful training thresholds were computed for each combination of network size (L), losses
(↵WG), and e↵ective nonlinearity ('), examples of which are displayed in Figs. 2a-c of the main manuscript and
Figs. S8a-c. A given trial is deemed to have successfully trained the QPNN if the optimized unconditional fidelity
F (unc) is greater than the lower bound (mean minus standard deviation) of the corresponding o✏ine training result
(c.f. lower shaded grey regions in Figs. 2d-f, 3a-c of the main manuscript). When considering imperfect QPNNs with
weak nonlinearities (c.f. Fig. 3 of the main manuscript, Figs. S4, S9, S11), trials were often separated into a set of
plateaus in unconditional infidelity, as visually evident in Fig. S8a. In these cases, the trials reaching the minimum
plateau were further isolated for analysis, denoting the corresponding performance measures with the subscript ‘max’
(minimum infidelity corresponds to maximum fidelity). Once trials were appropriately isolated, the raw data was fit
to a matching probability distribution to compute the results plotted in Figs. 2d-i, 3a-f of the main manuscript.
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Fitting the Propagation Loss Results

In Fig. S5, we provide the raw data for the successfully-trained 2-layer imperfect QPNNs of ideal nonlinearities
(' = ⇡) and 0.01 dB/cm losses, as an example. The o✏ine training data is compared with the in situ in Fig. S5a,
showing the general increase in unconditional fidelity that is achieved as the network learns to account for fabrica-
tion imperfections, thus approaching the loss limit. The in situ unconditional fidelity (Fig. S5a), conditional fidelity
(Fig. S5b), and computational basis probability (Fig. S5c) data were respectively fit with logarithmic normal distri-
butions using SciPy (version 1.8.1). The mean (95% confidence intervals) of each of these distributions provide the
points (error bars or shaded regions) plotted in Fig. 2 of the main manuscript.

Fitting the Weak Nonlinearity Results

In Fig. S6, we provide the raw data for the successfully-trained 3-layer imperfect QPNNs of e↵ective nonlinearity
' = 3⇡/4 and state-of-the-art 0.3 dB/cm losses, as an example. The o✏ine training data is compared with the in situ
in Fig. S6a, showing the general increase in unconditional fidelity that is achieved as the network learns to account
for weak nonlinearities and fabrication imperfections, thus approaching the loss limit. There are clearly separated
plateaus in unconditional fidelity (separate peaks in the blue all in situ histogram), as can also be viewed in terms
of infidelity Fig. S8b. Only trials within the maximum unconditional fidelity plateau were further analyzed by fitting
respective beta distributions to the unconditional fidelities (inset to Fig. S6a), conditional fidelities (Fig. S5b), and
computational basis probabilities (Fig. S5c) using SciPy (version 1.8.1). The mean (95% confidence intervals) of each
of these distributions provide the points (error bars or shaded regions) plotted in Fig. 3 of the main manuscript.

FIG. S5. Data analysis for successfully-trained 2-layer imperfect QPNNs of ideal nonlinearities (' = ⇡) and 0.01 dB/cm losses.
(a) Histograms of the unconditional fidelities F (unc) for QPNNs trained o✏ine (orange) and in situ (pink). The in situ data
was fit with a logarithmic normal distribution (purple line), and the loss limit (dashed black line, also in (c)) is shown for
comparison. The (b) conditional fidelities F (con) and (c) computational basis probabilities P(cb) for QPNNs trained in situ are
given as histograms (pink) with respective logarithmic normal distribution fits (purple lines).
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FIG. S6. Data analysis for successfully-trained 3-layer imperfect QPNNs of e↵ective nonlinearity ' = 3⇡/4 and 0.3 dB/cm
losses. (a) Histograms of the unconditional fidelities F (unc) for QPNNs trained o✏ine (orange) and in situ (blue). A separate
histogram (pink) is displayed that only contains the in situ results for QPNNs trained to the minimum plateau in unconditional
infidelity (c.f. Fig. S8a), and the inset provides an expanded view of it. This histogram was fit with a beta distribution (purple
line), and the loss limit (dashed black line, also in (c)) is shown for comparison. The (b) conditional fidelities F (con) and
(c) computational basis probabilities P(cb) for QPNNs trained in situ are given as histograms (pink) with respective beta
distribution fits (purple lines).

S4. TRAINING NETWORKS WITH WEAK NONLINEARITIES

In Fig. S7, we provide an alternate version of Fig. 3 from the main text that includes the average unconditional
fidelities of all successful training trials (of 200 total), for each network size L and e↵ective nonlinearity ', across
panels (a) to (c). Here, a trade-o↵ between the network’s trainability and its e↵ective nonlinearity begins to become
evident. While 2-layer, ⇡/2-nonlinearity QPNNs (see Fig. S7a) achieve loss-limited performance, it is di�cult to attain
this best-case result in a given training trial, as reflected by the much lower average unconditional fidelity. While in
general, it is apparent that networks with e↵ective nonlinearities less than the ideal tend to be more di�cult to train,
there exists a non-trivial relationship between the trainability, e↵ective nonlinearity, and network size. Specifically,
for 3-layer networks (see Fig. S7b), the additional layer improves the trainability of networks with ' ⇠ ⇡/2 more
drastically than for other ', as can be seen by the larger increase in average unconditional fidelity. In fact, this
increase suggests that the trade-o↵ between trainability and e↵ective nonlinearity is essentially removed for networks
with ' ⇠ ⇡/2 when a single additional layer is added.

In Figs. S8a-c, we provide exemplary training traces for imperfect QPNNs of 2 to 4 layers with state-of-the-art
losses (↵WG = 0.3 dB/cm) and weak Kerr nonlinearities (' . ⇡). For each e↵ective nonlinear phase shift ', 200
optimization trials were conducted. The trainability of these QPNNs is further examined in Figs. S8d-f, where the
percentage of trials that reach a unconditional fidelity threshold is plotted over a domain of F (unc). Here, the di�culty
of training QPNNs, with ' < ⇡, to loss-limited performance is evident. QPNNs of 2 layers (Fig. S8d) can reach optimal
performance with ' = ⇡/2 in addition to ⇡, however, the desired unconditional fidelity is only reached in 5.0% of trials
for the former, compared to 39.5% of trials for the latter. By increasing the network size, the trainability improves in
general, for all ', at the cost of a decreased loss limit.
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FIG. S7. Performance of realistic QPNN-based BSAs with sub-optimal (' . ⇡) nonlinearities and state-of-the-art
(↵WG = 0.3 dB/cm) losses. The unconditional fidelity F (unc) of (a) 2, (b) 3, and (c) 4-layer networks is shown with re-
spect to the e↵ective nonlinear phase shift ', showing both o✏ine (solid black curves, shaded grey regions) and in situ (colored
symbols) trained networks, and the loss limit (dashed line). In situ results include the average of all successfully-trained QPNNs
(circles) and the best-case, where triangles (error bars) show the mean (95% confidence intervals) of a beta distribution fit to
the maximal unconditional fidelity plateau (see the Supplementary Information S3, S4 for statistical analysis details and an
example of this plateau). The (d) unconditional fidelity F (unc), (e) conditional fidelity F (con), and (f) computational basis
probability P(cb) are plotted for each ' denoted on the colorbar, for networks of up to 7 layers. All means (triangles) and 95%
confidence intervals (error bars) were determined in the same manner as the best-case in situ results of (a)-(c). Connecting
dotted lines serve only as a visual aid.
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Minimum
Plateau

FIG. S8. Training data for imperfect QPNNs with state-of-the-art 0.3 dB/cm losses and weak nonlinearities (' . ⇡). The
unconditional infidelity C(unc) of (a) 2, (b) 3, and (c) 4-layer networks are shown as a function of the training iteration for
networks with e↵ective nonlinearities as labelled in the colorbar. Colored ticks denote the thresholds computed to determine
whether the QPNN was successfully-trained in a given trial, out of 200 trials each, with the shaded blue region displaying an
example for ' = ⇡. In (a), the minimum plateau in C(unc) for QPNNs of ' = ⇡/2 is displayed as a visual aid. The trainability
of (d) 2, (e) 3, and (f) 4-layer networks is examined by plotting the percentage of trials that achieve an unconditional fidelity
threshold, over a domain of them. The shaded grey region depicts the F (unc) that cannot be achieved due to the loss limit.
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Comparing Imperfect QPNNs with an Ideal Fredkin Gate-based BSA

A BSA can be constructed from a controlled-NOT (CNOT) gate followed by a Hadamard gate applied to the control
qubit [S7]. With dual-rail encoded photonic qubits, the CNOT gate can be realized from a quantum-optical Fredkin
gate [S8] which uses two 50:50 DCs (equivalent to Hadamard gates) and a nonlinear Kerr medium that connects the
two photonic qubits as displayed in the inset to Fig. S9. However, it is only deterministic for an e↵ective nonlinear
phase shift ' = ⇡ [S9]. Altogether, this circuit can be described by the unitary transformation,

UBSA = (H⌦ I) · (I⌦H) ·⌃(') · (I⌦H) ,

=
1p
2

0

B@

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

1

CA
1p
2

0

B@

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

1

CA

0

B@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei'

1

CA
1p
2

0

B@

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 1 �1

1

CA , (S6)

in the computational basis of the two photonic qubits, where H represents the Hadamard gate, I is the identity,
and ⌃(') describes the transformation of e↵ective nonlinearity ' conducted by the Kerr medium. With this BSA
transformation, the unconditional fidelity of the Fredkin gate-based BSA is given by,

F (unc) =
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that define the BSA operation. In this case, the unconditional

fidelity is the same as the conditional since the model has considered ideal operation (i.e. no losses, DC splitting
ratio variations) outside of a potentially sub-optimal '. In Fig. S9, we compare the performance of a perfectly-
fabricated Fredkin gate-based BSA to the unconditional fidelities of imperfect 2-layer QPNN-based BSAs with weak
nonlinearities (c.f. Fig. 3a of the main manuscript), as a function of the e↵ective nonlinear phase shift '. The fidelity
of the Fredkin gate-based BSA closely resembles the upper bound of QPNNs trained o✏ine, yet is not hindered by
the loss limit due to the absence of losses in the model described for it. Imperfect QPNNs trained in situ show
improved performance for '  3⇡/4, rea�rming the learning capabilities demonstrated by the QPNN, even with
weak nonlinearities. This comparison also shows why the non-monotonic relationship between F (unc) and ' for in
situ-trained QPNNs, as described in the main manuscript, was unexpected.

FIG. S9. Comparison between the respective unconditional fidelities of perfectly-fabricated quantum-optical Fredkin gate-based
BSAs and imperfect 2-layer QPNN-based BSAs with state-of-the-art 0.3 dB/cm losses, as a function of e↵ective nonlinear phase
shift '. The inset shows a photonic circuit diagram of the Fredkin gate-based BSA. Results are shown for QPNNs trained o✏ine
(orange line shows mean, shaded region shows standard deviation) and in situ, both as the mean of all trials (pink circles) and
the results at the maximum unconditional fidelity plateau (purple triangles with error bars showing 95% confidence intervals),
which are all constrained by the loss limit (dashed black line). Connecting lines for the in situ results serve as a visual aid.
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S5. GENERATING GREENBERGER-HORNE-ZEILINGER STATES

Here, we present results for imperfect QPNNs trained to generate Greenberger-Horne-Zeilinger (GHZ) states. The
training set only uses one input-output state pair,

| ini = |000i ! | outi =
1p
2
(|000i+ |111i) , (S8)

as in Ref. [S1], where the states are presented in the computational basis such that there are three photonic qubits (and
thus six spatial modes, see the inset to Fig. S10d for a QPNN-based GHZ generator diagram). All training procedures
were chosen to match those explained in the main manuscript. Thus, the absence of plateaus for ↵WG  0.01 dB/cm
in Figs. S10a-c may be attributable to sub-optimal training parameters. Fig. S10 shows the results of 2 to 4-layer
QPNN-based GHZ generators with perfect nonlinearities (' = ⇡) and varied losses ↵WG (c.f. Fig. 2 of the main
manuscript), trained in 50 trials for each set of parameters. Networks trained in situ approach the loss limit as
discovered for the QPNN-based BSA. Similarly, the unconditional fidelity and computational basis probability may
increase with additional layers for losses  0.01 dB/cm. Fig. S11 shows the results of 2 to 4-layer QPNN-based GHZ
generators with state-of-the-art losses (↵WG = 0.3 dB/cm) and weak nonlinearities (' . ⇡) (c.f. Fig. 3 of the main
manuscript), trained in 200 trials for each set of parameters. Networks trained in situ reach improved unconditional
fidelities over o✏ine training, and tend toward the loss limit, as discovered for QPNN-based BSAs. However, the
relationship between F (unc) and ' is solely monotonic. Overall, for a given amount of losses and e↵ective nonlinear
phase shift, there similarly exists an optimal network size for QPNN-based GHZ generators.
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FIG. S10. Performance of a QPNN-based GHZ generator su↵ering from fabrication imperfections. The unconditional infidelity
C(unc) of (a) 2, (b) 3, and (c) 4-layer networks are shown as a function of the training iteration for increasingly lossy networks.
In each pane, the results of 50 optimization trials are displayed, with clear plateaus visible in C(unc) that increase with the losses.
In each case, only trials that result in infidelity at or below those achieved by o✏ine training (colored ticks in (a)-(c), shaded
regions in (d)-(f)) are considered successful (shaded blue region shows an example for 0.001 dB/cm). The unconditional fidelity
F (unc) of (d) 2, (e) 3, and (f) 4-layer networks are plotted with respect to the average losses ↵WG, with colored symbols (shaded
regions) corresponding to the mean (95% confidence interval) of a logarithmic normal distribution fitted to the successful trials
of (a)-(c). These points are seen to lie on the (dashed) loss limit curve, where the performance of the network is only limited
by uniform photon loss (assumes perfect DCs), in contrast to networks that are trained o✏ine (solid black curves and shaded
grey regions), demonstrating the ability of QPNNs to learn to overcome imperfections. (g) Unconditional fidelity F (unc), (h)
conditional fidelity F (con), and (i) computational basis probability, P(cb), as a function of L for the QPNNs trained in situ,
where the mean (symbols) and 95% confidence intervals (shaded regions in (g), (i), error bars in (h)) are determined via the
same method as (d)-(f).



12

FIG. S11. Performance of imperfect QPNN-based GHZ generators with sub-optimal (' . ⇡) nonlinearities and state-of-the-art
(↵WG = 0.3 dB/cm) losses. The unconditional fidelity F (unc) of (a) 2, (b) 3, and (c) 4-layer networks is shown with respect
to the e↵ective nonlinear phase shift ', showing both o✏ine (black curves, shaded grey regions) and in situ (colored symbols)
trained networks, and the loss limit (dashed line). In situ results include the average of all successfully-trained QPNNs (circles)
and the best-case, where triangles (error bars) show the mean (95% confidence intervals) of a beta distribution fit to the maximal
unconditional fidelity plateau. The (d) unconditional fidelity F (unc), (e) conditional fidelity F (con), and (f) computational basis
probability P(cb) are plotted for each ' denoted on the colorbar, for networks of up to 4 layers. All means (triangles) and 95%
confidence intervals (error bars) were determined in the same manner as the best-case in situ results of (a)-(c). Connecting
dotted lines serve only as a visual aid.


