
Radio-Frequency Linear Analysis and Optimization of
Silicon Photonic Neural Networks

Eric C. Blow,* Simon Bilodeau, Weipeng Zhang, Thomas Ferreira de Lima,
Joshua C. Lederman, Bhavin Shastri, and Paul R. Prucnal

1. Introduction

Microwave photonic (MWP) systems leverage the large fractional
bandwidth between radio-frequency (RF)-modulated signals and
optical carriers to perform analog processing tasks at low latency
and high dynamic range.[1,2] Using wavelength division multi-
plexing, this technological platform enables simultaneous analog
processing of the entire modern wireless spectrum at the front-

end of receivers. Historically, the caveat of
MWP systems has been poor RF perfor-
mance with respect to signal link loss
and noise figure, which without optimi-
zation can frequently disqualify MWP
systems from telecommunication applica-
tions.[3,4] Monolithic integration of MWP
systems is leveraged to help mitigate these
RF concerns by minimizing coupling
losses between optical components and sig-
nificantly reducing size, weight, power, and
cost compared to discrete optical systems.[5]

In the early 2010s, research groups
began to use the silicon MWP platform
to perform machine learning processing
tasks.[6–9] Although this is not the first
attempt at neuromorphic photonics, the
combination of these modern platforms
offers a promising pathway toward large-

scale integrated solutions compared to free-space optical neural
networks.[10,11] As these fields continue to develop,[12] their
convergence enables next-generation processors, capable of
high-bandwidth machine learning processing at the edge.

Silicon photonic neural networks (PNNs) have recently been
successfully implemented to address high-speed RF applications.
Although silicon PNNs are highly general and applicable to many
high-speed real-time processing tasks, the two most prevalent
and recent examples of silicon PNNs are with respect to RF fin-
gerprinting[13,14] and nonlinear dispersion compensation within
long-haul communication lines.[15] While successful in its imple-
mentation, the performance of the PNN with respect to these
tasks was limited in scope by the RF performance of the system.
For example, the RF fingerprinting task could only successfully
classify a transmitter if it operates within a wireless environment
with a signal-to-noise ratio (SNR) of at least 15 dB.[14] The mini-
mum SNR required for classification is a product of the difficulty
of classification and the signal degradation caused by photonic
processing, which in these preliminary systems was unnecessar-
ily high. An SNR requirement limits the scope of classification to
high-quality wireless channels. The previously implemented
PNN architectures were not designed with RF performance pri-
oritized. Although RF-specific experimental data is not provided
within the aforementioned references, these systems would have
exhibited high noise figures.[14,15] From the analysis completed
within this article, estimated noise figures upwards of 40 dB
would be expected. The detailed analysis and simulation pro-
vided in later sections result in improved silicon PNN architec-
tures with respect to noise figure reduction. This improvement
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extreme bandwidths and speeds. Herein, low-quality factor microring resonators
are implemented to demonstrate broadband optical weighting. In addition,
silicon photonic neural network architectures are critically evaluated, simulated,
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and nonlinear loss within silicon waveguides, and the impact of electrical
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enables photonic-enhanced machine learning without the caveat
of requiring high-SNR RF environments. In addition to SNR con-
siderations, later sections of this article include RF dynamic
range analysis of silicon PNNs and explore techniques to main-
tain weighting accuracy at high operating frequencies with broad
bandwidths.

2. Silicon Photonic Neural Networks

The analysis in this article will be limited to the broadcast and
weight silicon PNN architectures.[9,15] Alternative PNN architec-
tures, such as Mach–Zehnder interferometer mesh networks,[16]

would also benefit from RF analysis and optimization, but the dif-
ferences in optical loss of these two architectural types would need
to be accounted for. As shown in Figure 1, the broadcast and
weight silicon PNN comprises a linear optical front-end and a
nonlinear optical back-end. The linear processing requirement
of a neural network is positive and negative weighted summation,
while the nonlinear processing of a neural network is an application-
specific activation function responsible for decision-making.
Between the two optical subsystems, an electrical link enables
transimpedance amplification. All three subsystems have been dem-
onstrated on a silicon photonic integrated circuit (PIC).[6,17,18]

In this architecture, the weighting is accomplished using a sil-
icon microring resonator (MRR) weight bank.[6] A MRR weight
bank contains N number of MRRs with unique resonances cor-
responding to N unique optical carrier wavelengths modulated
by RF input signals. The difference between resonance of the
MRR and input wavelength determines the amount of light that
couples into the ring and transitions from the input port to the
drop port of the MRR. A thermal metal heater is cointegrated
directly above the silicon MRR. As heat is generated by driving
the embedded heater, the resonance of these devices begins to
shift due to the thermo-optic effect within the silicon waveguide.
By tuning the resonance of the MRR from on resonance to off res-
onance with respect to the input wavelength, an optical signal can be

weighted between 0 and 1 while the drop port is observed. The key
to this architecture is that the thru port of theMRR is a complemen-
tary output to the drop port. Therefore, by pairing the MRR weight
bank with a balanced photodetector (BPD), subtraction of the thru
and drop ports occurs, resulting in�1 toþ1 optical weighting. The
summation of all inputs is also accomplished via the BPD, as the
speed of this device is much slower than the wavelength of the opti-
cal carriers, summing the incident optical signals at the BPD across
wavelengths. In-depth literature on implementation and control of
these weight banks is shown in refs. [6,7,19,20].

Within the silicon PNN, the nonlinearity processing require-
ment is achieved by biasing MRR modulator within the nonlinear
region of themodulation transfer function[21] and driving thismod-
ulator with the output of the linear front-end. The silicon photonic
modulator neuron has demonstrated a variety of relevant transfer
functions to machine learning tasks, specifically sigmoids, rectified
linear units, a radial basis function, and quadratic functions.[17]

The combination of the linear front-end and nonlinear back-
end creates an optical-electrical-optical (O-E-O) link per photonic
neuron. The O-E-O link enables optical pumping in each layer,
which could introduce an effective optical gain even with passive
transimpedance.[22] This can be further enhanced with active
electronics, either implemented directly in the silicon photonic
platform[18] or through cointegrated high-speed complementary
metal-oxide-semiconductor electronics.[23] The access to amplifi-
cation within each photonic layer enables the potential to reach
unity gain and therefore scale the network without signal degra-
dation.[22] Scaling is a critical advantage of this architecture,
compared to all-optical approaches.[16]

3. Demonstration of Wideband Linear Optical
Weight Bank

Previous reporting of silicon weight banks has shown variation in
weighting over narrow bandwidths,[24] which leads to a limitation
in input instantaneous bandwidth of the silicon PNN to 100s of
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Figure 1. Mathematical representation of neuromorphic processing requirements (top subfigure) and correlating schematic demonstrating the photonic
implementation of these requirements into a broadcast and weight architecture. The schematic highlights the linear front-end and nonlinear back-end, as
well as highlighting which processing is computed typical on the silicon PIC. PC= polarization controller, MRR=microring resonator, TODL= tunable
optical delay line, BPD= balanced photodetector, TIA= transimpedance amplifier.
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MHz. This variation in weighting was the result of high-quality
factor MRR optical resonances. Within the previous work,[24] the
full width half maximum (FWHM) was equivalent to 9.7 GHz,
which limits the bandwidth of linear weighting. Within this
demonstration, 11.3 μm-radius silicon MRRs were designed to
have a lower Q-factor and a broader resonance, with FWHM
of 43.37 GHz. These experimentally measured rings demon-
strated a significant increase in the RF weighting bandwidth,
with a 3 dB bandwidth of 4.7 GHz and a 6 dB bandwidth of
9.5 GHz. Furthermore, these results demonstrated a low weight
variation of <0.1 dB. Disadvantages to broadening include the
reduction in the number of possible channels before requiring
reuse of wavelengths, as well as a larger tuning range require-
ment to cover the weighting range. If the free spectral range
(FSR) of the resonator structure is less than the bandwidth of
the optical C-band, the maximum number of channels is defined
as the FSR divided by the FWHM. If not, the number of channels
is the spectral width of the C-band divided by the FWHM. The
thermal tuning of the rings has a fixed Δλ/ΔT and, therefore, a
larger FWHM requires a linear scaling of the thermal power
required to tune the MRR weight.

As shown in Figure 2, a microwave network analyzer, Keysight
N5222A PNA, was connected to the silicon weight bank through
an off-chip 10 GHz Mach–Zehnder modulator (MZM) and a
BPD. The wavelength of the tunable laser source was set to
1551 nm, near the edge of the MRR resonance which was
centered at 1551.7 nm. The optical carrier was modulated via
the MZM and then vertically coupled to the silicon photonic chip
through grating couplers. The signal was weighted by the MRR
and then coupled off-chip to two tunable optical delay lines
(TODL). The TODLs are used for delay and phase matching
of the thru port and drop port optical paths before subtraction
at the BPD. The weighting was then swept by adjusting the
amount of current applied to the embedded resistive heater.[7,20]

The measured S21, shown in Figure 3a, demonstrated a 3 dB
weighting bandwidth of 4.7 GHz and was tested for broadband
weighting from �1 to þ1. The varying trace color from purple to
orange of Figure 3a represents the S21 of linear front-end of the
neural network while linearly sweeping the MRR control current
from fully on-resonance to off-resonance. The weighted signals
were subtracted to measure the variation in weighting as a func-
tion of frequency between all different possible weighting values,
as shown in Figure 3b. Variation in weighting as a function of
bandwidth would limit the instantaneous bandwidth of RF input
signals that can be processed simultaneously. This measurement
demonstrates the broadband operation of silicon weight
banks and the design trade-off between instantaneous processing
bandwidth and channel density.

4. Weighting Accuracy at High Operating
Frequencies

As the operating frequency of the silicon PNN linear front-end
increases, additional requirements become relevant to achieve
precise and accurate wideband weighting. The two optical paths
of silicon weight banks must be matched in amplitude, delay,
and phase.[25] If mismatched, there will be a limitation to the
accuracy of the weighting achieved by subtraction as shown in
Equation (1). The amplitude mismatch term, Δα, is the primary
mechanism used to generate the weight, wi. The initial amplitude
mismatch between the two optical paths can be calibrated
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Figure 2. Experimental setup for broadband linear front-end weighting.
Including micrograph of silicon photonic weight bank used within
the experiment. PNA= portable network analyzer, PC= polarization
controller, MRR=microring resonator, TODL= tunable optical delay line,
BPD= balanced photodetector.

Figure 3. RF transfer function, S21, results of MRR as a function of applied current from 0.0 to 2.5mA, corresponding to a neural network weight tuned
from on-resonance to off-resonance (left). Difference in the transfer function of each weighting step showing the bandwidth dependence of the weight as
a function of frequency and applied weight (right).
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within the MRR control. Within demonstrations of a single MRR
weight-bank operation, such as presented in this article, delay
and amplitude matching are compensated with off-chip TODL
and variable optical attenuators. The importance of this matching
is understated in the literature.

In a fully integrated solution of silicon PNNs, the amplitude
mismatch between the two optical transfer functions can still be
calibrated with MRR control, but any delay difference must be
matched for each weight within each photonic neuron. The effect
of phase and delay mismatch, Δϕ and Δτ, increases proportion-
ally with the operating frequency of the PNN. The proportionality
between the weighting variance and the operating frequency is
shown experimentally in Figure 3b. The sensitivity to mismatch
is maximized when the output of the linear front-end of the
silicon neuron is set to zero, implying that the input has no
correlation to the output decision. This requirement for precise
photonic subtraction is identical to the processing requirements
of MWP cancellation systems.[26] Delay-mismatched weight-bank
response results in an interferometric fringe response with spac-
ing equal to integer multiples of the delay mismatch. This fringe
response yields operating frequencies where uncorrelated input
signals impact the output of the neuron. As a result, high-
frequency silicon weight banks require additional delay tuning
on thru and drop optical paths to address for mismatch intro-
duced by the add-drop weight bank geometry.

Weight banks with single MRRs introduce a delay difference
dependent on the location of the ring because of the inability to
match the thru path and drop path for all rings. Double MRR
resonators can be implemented to match the optical path length
regardless of location. There is a delay mismatch introduced
by the difference in effective optical path length as a result of
the varied ring geometry required for each channel. Finally,
MRRs introduce a phase shift dependent on detuning for each
weighting channel. To fullymatch the effects within these two paths
requires a wavelength-sensitive delay for each individual weight.
This can be achieved by implementing MRR racetrack delays that
have resonances equal to the weights of interest (Figure 4).[27]

wiXi ¼ 1þ Δα� 2Δα� cos iωΔϕþ Δτð Þ2ð ÞXi (1)

5. Radio-Frequency Analysis

5.1. Linear Front-End and Nonlinear Back-End

The RF performance analysis within this article will focus on
three critical metrics: link loss, noise figure, and spurious-free
dynamic range (SFDR). RF link loss is the reduction in RF power

due to the device-under-test (DUT). Noise figure is a metric
for quantifying the SNR degradation due to the DUT. SFDR
is defined as the power difference between the minimal detect-
able signal (MDS) and the RF input power when the intermodu-
lation distortion (IMD) products begin to dominate the
fundamental signal. Within an optical system, the third-order
IMD dominates. The RF analysis within this section builds on
the conference proceedings,[28] which provided basic simulations
of neuromorphic photonics without consideration of silicon pho-
tonic loss, waveguide nonlinearities, low noise amplification
(LNA), nor dynamic range. The foundations of this analysis
can be found in primary refs. [3,29–33].

The RF performance of a PNN in its totality is fundamentally
limited by the RF performance of a single optical subsystem, the
linear front-end of the input layer. The limitation is defined as
such because this is the only section of the neural network’s proc-
essing chain which is intended to operate with a linear transfer
function acting on unproccessed analog input signals. A critical
result of PNN nonlinear noise analysis from Ferreira de Lima,
et al.[22] showed noise performance conservation of the propagat-
ing signals from layer to layer within the PNN due to nonlinear
operation. Therefore, the RF performance of the optical linear
front-end will determine the SNR range in which input signals
can be processed. Achieving cascalability of the PNN after the
first linear layer requires compensation for the RF power loss
from layer to layer. This can be achieved with an O-E-O electrical
gain, as explained in Section 2. RF analysis and optimization can
have two significant impacts. First, optimizing and lowering the
noise figure of the linear front-end results in a lower SNR
requirement of the input signal, extending the application space
of neuromorphic photonics. Second, optimizing and lowering
the RF power loss of each photonic neural layer reduce the gain
requirements of the electrical amplification responsible for com-
pensating this loss in aims to achieve network scalability. Within
this article, the analysis perspective is equivalently shifted from
the perspective of each neuron, O-E-O, to the perspective of
weighted neural interconnections, E-O-E. In this perspective,
the electrical input signal is driving the previous modulator
neuron, and the weighted output electrical signal is driving
the next modulator neuron. All three RF performance metrics
highlighted within this analysis share proportionality with the
input optical power, and therefore this parameter will be utilized
as the independent variable for the simulations.

5.2. Link Loss Analysis

Link loss is defined as the RF power ratio between the input and
output of an analog photonic link. The primary causes of loss
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Figure 4. Addition of wavelength-sensitive phase bank for individual channel phase matching to ensure weighting accuracy.
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within the linear front-end of the broadcast and weight
neural network are inefficiencies of the electrical-to-optical up-
conversion (modulation) and optical-to-optical down-conversion
(detection). The optical link loss accounts for all insertion losses
accrued by processing and optical coupling. Additionally, there
are linear and nonlinear losses associated with waveguide propa-
gation. Resonator-based NP architectures are more significantly
affected by nonlinear loss because of power buildup within the
MRR.[32] Finally, this analysis will assume passive resistive
impedance matching, which introduces a 1/4 loss term, but this
could be improved with active impedance matching at the cost of
bandwidth. For all layers that follow the input layer, the transi-
mpedance amplifier must exceed the RF loss; otherwise, there
will be a scaling limit to the PNN layer depth. Finally, there is
loss associated with signal fan-out to multiple neurons.

GPNN ¼ GImpedance
� �

Gmodð Þ2 Gopt
� �

2 GWaveguide
� �

2

GMRRð Þ2 GDetectð Þ2
(2)

The modulation type, direct or external, of the input layer is a
critical architectural choice for the system. Historically, external
modulation has been used as the input layer of the PNN.[12,21]

Note the modulation loss terms, Equation (3), and the depen-
dence on the input optical power. The gain of a directly modu-
lated (DM) architecture is independent of optical power, while
the gain of an externally modulated (EM) architecture is depen-
dent on the square of optical power. With respect to external
modulation, the modulator can be either off-chip, such as a larger
lithium niobate efficient modulator at the cost of size, weight,
power, and cost (SWaP-c), or on-chip, such as a highly compact
silicon modulator. The off-chip modulators allow for longer
phase actuation regions with lower-loss waveguides, yielding a
higher modulation sensitivity and therefore a lower Vπ,

[34] com-
pared to compact silicon modulators.[35,36] With respect to DM,
the modulation efficiency depends on the slope efficiency, sLD, of
the directly modulated laser (DML). The bandwidth of DMLs has
improved significantly in recent years, with demonstrations of
speeds up to 55 GHz,[37] but is typically inferior to external
modulations with respect to this metric. Given the proportional
relationship between the modulation sensitivity, Vπ, and the link
gain for an EM system, the input layer modulators of the PNN
should be optimized for Vπ at the cost of physical chip space.

GDMmod ¼ SLDð Þ GEMmod ¼
PoptTModRLπ

2Vπ

� �
(3)

In this analysis, the optical loss due to processing is defined as
the coupling loss and the insertion loss of the MRR weights. An
edge coupler with 1.2 dB insertion loss was used for the analysis,
as demonstrated by Advanced Micro Foundry.[36] The insertion
loss of the MRR from input to drop port, terminated at BPD, was
measured to be 0.2 dB when set fully on resonance.

There are linear and nonlinear waveguide loss mechanisms
within silicon photonic waveguides. The linear propagation loss,
αo, is measured as 1.04 dB cm�1 in standard width and thickness
strip waveguides[36] and the length of the waveguide was defined
as 2mm as observed by previously published linear weight
banks.[7] Additional waveguide loss due to on-chip modulator
length is also considered. The nonlinear mechanisms within

the waveguide are free carrier absorption (FCA)[38,39] and two-
photon absorption (TPA).[31] FCA, Equation (4), is dependent
on the optical power and the amount of free-carriers, ΔNe

and ΔNh, within the effective mode area of the waveguide,
AreaFCA.

[40] TPA is dependent on the material properties of
the waveguide, the optical input power, and the effective mode
area of the waveguide, AreaTPA.

[40] The nonlinear material
coefficients for silicon, βTPA and σFCA, in addition to the carrier
life-time, τc, determine the material-specific strength of the
nonlinear effects and are shown in Table 1 with respect to the
transverse electric (TE) mode.

Comprehensive literature on nonlinearities within silicon
waveguides can be found in refs. [31,32,40]. The nonlinearities
effects computed for this analysis were with respect to a 500 nm
silicon-on-insulator strip waveguide. The ordinary differential
equation, Equation (5), reflecting the effects of TPA and FCA,
was solved over the length of the waveguide and yielded a signifi-
cant nonlinear loss at 15 dBm optical power. Nonlinear wave-
guide loss introduces a linear and square loss dependence on
optical power, yielding a gain limit for EM links which is asymp-
totically approached. Additionally, there is an upper threshold
of optical power within a silicon waveguide approximately at
33 dBm, where power buildup results in irreparable damage
to the silicon waveguide.[41]

GFCA ¼ 8.5� 10�18ΔNe þ 6.0� 10�18ΔNh (4)

δP
δz

¼ �αoP � α2P2 � α3P3 (5)

α2 ¼
βTPA

AreaTPA
(6)

α3 ¼
βTPA σFCA τc
2�hνArea2FCA

(7)

As mentioned previously, resonator-based MWP systems are
more sensitive to nonlinear losses due to power buildup within
MRRs. The MRR optical spectrum was measured for the silicon
weight bank. From this data, FWHM of 348.3 pm, FSR of
8.546 nm, and a finesse of 24.54 were measured. Additionally,
a finite-difference time-domain simulation was developed

Table 1. Parameter definition for RF analysis.

Symbol Metric Value

Pin Optical power in Swept 0–25 dBm

Tmod Optical transmission loss of modulator On-chip 7 dB[52] | Off-chip
3.5 dB[53]

RL Load resistance 50Ω

Vπ Voltage required for π phase shift of
modulator

On-chip 4 V[52] | Off-Chip
3.5 V[53]

rPD Photodetector responsivity 1.09 mWmA�1[43]

sLD Slope efficiency of laser diode 0.3761 mWmA�1[54]

RIN Relative Intensity Noise �162 dB Hz�1[54]

βTPA Silicon TPA coefficient 24.8 cm GW�1[40,55]

σFCAτc Silicon FCA coefficient * Silicon
Carrier Lifetime

9.71� 10�27cm2 s[40,55]
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utilizing the open-source software MEEP[42] to estimate the
coupling coefficient, r. This resulted in a value of 0.966 for
the MRR’s point coupler for 1.55 μm optical signals. The mea-
sured resonances metrics and the simulated coupling coefficient
were used in Equation (8) to calculate a round-trip loss coeffi-
cient, a, of 0.91. Finally, these metrics were used in Equation (9)
to solve for a power buildup of 4.736 within the MRRs. This
buildup factor multiplies the effective optical power inside the
MRR’s waveguides, and the nonlinearities were simulated over
the length of the MRR’s circumference, 71 μm. The nonlinear
effects within the MRRs cause nonlinear attenuation to begin
to dominate the system at lower optical powers. Additionally,
at high optical power, these effects increase significantly, result-
ing in an well-defined optimal operating point for the EM link
architectures. Nonlinear effects within the MRRs also lower
the optical damage threshold limit by a factor of the power
buildup.

F ¼ FSR
FWMH

¼ 2π

2arccos 2ar
1þa2r2

� � (8)

B ¼ a2 1� r2ð Þ
1� 2arcos ϕð Þ þ a2r2

(9)

The detection efficiency depends on the square of responsivity
of the on-chip germanium-on-silicon photodetector. A typical on-
chip photodetector that operates at up to 40 GHz with a respon-
sivity of 1.09 AW�1[36,43] was utilized for these simulations.

GDetect ¼ rPD (10)

Note that this analysis and the input optical power term are not
considering the fan-out (power reduction from signal splitting) of
the input layer. Fan-out manifests itself within theGopt term. The
fan-out optical loss will reduce the optical input power before res-
onator devices, and therefore, the strength of the waveguide non-
linear will set the upper limit of fan-out without performance
degradation. At this upper limit, the optical power increased
to account for fan-out is attenuated within the waveguide. An
estimated adjustment to the new optimal optical power operating
point considering fan-out would be to compensate for the optical
loss of the fan-out process until this additional power is equiva-
lent to the power build-up factor within the MRR. At this point,
increasing optical power will only be absorbed within the wave-
guide, resulting in a stagnation in optical gain and an inability to
compensate for further fan-out.

The link loss analysis was calculated using typical device per-
formance metrics with commercial-of-the-shelf (COTS) and on-
chip components available through current silicon photonic
foundry process design kits, as shown in Table 1.[23,36,44,45]

Analysis exploring the fundamental limits to the power of
weighting, matrix vector multiplication, can be found in ref. [33].

The link loss for five potential PNN linear front-end architec-
tures is shown in Figure 5. The solid curves indicate DM and
on-/off-chip EM. The novel balanced PNN front-end, dashed
curves, will be introduced in later sections. This figure highlights
the dramatic impact of nonlinearities within the waveguide and
MRR. Without nonlinearities, the link loss for the DM architec-
ture is independent of optical, and the EM architectures only

increase in gain as a function of optical power squared. In this
complete RF model of the PNN front-end, all architectures have
an optimal optical power input with respect to link loss.
Architectures with waveguide nonlinear loss mechanisms but
without resonators would result in link loss asymptotically reach-
ing a maximum gain. With resonator buildup loss mechanisms,
after exceeding this optimal gain point, increasing optical input
power results in excess loss worsening the overall system perfor-
mance. Increasing the buildup factor within the MRR results in a
shift of the optimal operating point to lower optical powers.
These results are representative of the MRRs presented in the
Experimental Section. The DM PNN architectures perform best
at low optical power, 0 dBm, achieving �20.66 dB in link gain.
The EM on-chip PNN loss is minimal at 20.4 dBm optical power,
achieving �34.17 dB of link gain, and the EM off-chip PNN loss
is minimal at 20.4 dBm optical power, achieving �22.56 dB link
gain.

5.3. Noise Figure Analysis

Noise figure is an RF performance metric that represents the
degradation in SNR due to the device-under-test, in this case
the silicon photonic PNN. There are three primary noise sources
within analog photonic links: thermal noise, shot noise, and rel-
ative intensity noise (RIN).[3] Note the difference in optical power
dependency between these noise sources: Thermal noise is inde-
pendent, shot noise is linearly proportional, and RIN noise is pro-
portional to the square of optical power at the photodetector.
These dependencies create three separate performance regions,
depending on which noise term currently dominates the system.
The regions are defined with respect to optical power and are
strongly dependent on the temperature of the PIC, the noise
quality of the laser, and the bandwidth of the photodetector.[29]

The RF noise figure is shown in Equation (12). Substituting the
PNN gain term for the EM or DM specific gain term results in a
noise figure equation dependent on the architecture.

Figure 5. RF link loss of the linear front-end of the PNN as a function of
optical power for different modulation architectures. Solid curves are sin-
gled-ended links while dashed curves are balanced. Purple curve indicates
off-chip direct modulation, red curves indicate off-chip external modula-
tion, blue curves indicate on-chip external modulation, and dashed line
indicates on-chip modulation.
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F ¼ Nout

GNin
(11)

FPNN ¼ 1þ 1
GPNN

þ qrPDPoptRL

2GPNNkT
þ P2

optr2PDRLRIN
4GPNNkT

(12)

Such as RF link loss, the RF noise figure of the simulated PNN
architectures, shown in Figure 6, exhibits optimal operating opti-
cal power points. The left dashed black line represents the noise
figure limit due to thermal noise for DM architectures, and the
right dashed black line represents the noise figure limit due to
RIN and nonlinear waveguide loss for EM architectures. The DM
architecture exhibits a 22.52 dB noise figure at 0 dBm optical
power. The EM PNN architecture exhibits a noise figure of
35.84 dB and 37.22 dB at 20.4 dBm optical power for off-chip
and on-chip modulation, respectively. The DM PNN architecture
has an optimal noise figure of 22.52 dB at 0 dBm optical power
and significantly outperforms the single-ended EM PNN archi-
tectures by 13.32 dB at optimal operating points. The difference
in performance is due to the DM architecture optimally perform-
ing within the thermal noise limited region, while the high gain

region for EM PNN architectures is within the RIN limited
region, which is a higher noise power term.

5.4. Balanced Weight Bank

First introduced to improve the noise figure of fiber-based analog
photonic links, differential detection links, also known as bal-
anced architectures, implement a dual-output MZM (DO-
MZM) to generate complementary RF signals on two matched
optical paths terminated by a BPD.[46] The complementary sig-
nals add, resulting in 6 dB RF gain compared to single-ended
links, and simultaneously the common-mode laser noise, RIN,
subtracts. The amount of RIN power removed is proportional
to the precision of the matching between the two optical paths
with respect to amplitude and phase as well as inversely propor-
tional to the amount of RF power into the DO-MZM.[30] By sup-
pressing RIN, the noise figure of EM architectures can be
significantly decreased by extending the shot noise-limited
region. Within this region, increased optical power results in
squared RF gain while only linearly increasing noise; therefore,
the noise figure will be reduced linearly. This technique can be
implemented in the input layer of the PNN weight bank in the
configuration shown in Figure 7, creating a balanced weight
bank, first purposed in ref. [28]. Double-ring MRRs are imple-
mented to better match the four optical path lengths to improve
RIN suppression and weighting accuracy.

The balanced weight bank reduces the noise figure of the EM
architectures by 7.04 and 8.33 dB for off-chip and on-chip mod-
ulation, respectively. For applications which require modulation
bandwidths higher than DM can support, this architectural type
can preserve RF performance at high speeds. The caveat to
implementing this architecture is the increased complexity in
control and the number of devices. This increase in control com-
plexity could reduce the precision of the weight bank, which can
negatively impact classification performance depending on appli-
cation requirements.[19,20] For the RF simulations, 30 dB of RIN
suppression was assumed,[30] and the performance of the bal-
anced links is shown by dashed curves. Equation (13) and (14)
show the necessary MRR weight control required to achieve
the desired weight required by the PNN while still optimizing
for the suppression of RIN. As shown in Equation (14), the
RIN noise terms nRIN(t) are canceled out while the modulated
optical signal, X(t), experiences a factor of two gain. The ring

Figure 6. RF noise figure of the linear front-end of the PNN as a function
of optical power for different modulation architectures. Left dashed black
line indicates noise figure limit for DML dominated by thermal noise. Right
dashed black line indicates noise figure limit for EM architecture limited by
RIN and nonlinearity within the waveguide.

TODL

τ

τ

τ

τ BPD

Modulator

+

-

(a)

(b)

(c)

(d)

Figure 7. Schematic for novel balanced weight bank architecture for reduction in noise within the linear front-end of the PNN. a–d) correspond to the four
unique optical paths referenced within Equation (13) and (14). TODL= tunable optical delay line, BPD= balanced photodetectors.
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weighting term, α, is mapped to the desired weighting term, w,
by the final relationship in Equation (14).

a½ �∶ α X tð Þ þ nRIN tð Þð Þ
b½ �∶ 1� αð Þ X tð Þ þ nRIN tð Þð Þ

c½ �∶ 1� αð Þ �X tð Þ þ nRIN tð Þð Þ
d½ �∶ α �X tð Þ þ nRIN tð Þð Þ

(13)

RFOut∶wX tð Þ¼ 1þ3½ �� 2þ4½ �
¼ X tð Þ 2α�1ð ÞþnRIN tð Þ½ �� X tð Þ �2αþ1ð ÞþnRIN tð Þ½ �
¼2X tð Þ 2α�1½ �

w¼ 2α�1½ �
(14)

5.5. Low Noise Amplification

Preamplification is critical within MWP systems. With this tech-
nique, the input signal SNR is improved before the introduction
of optical noise. LNA simply decreases the RF link loss by the
gain of the amplifier and reduces the noise figure by the Friis
equation for series noise stages, Equation (15). The caveat of
preamplification is the reduction in the system’s maximum
RF power handling, third-order intercept point (IIP3), by a factor
of the preamplifier gain. Additionally, excess power consumption
of the amplifier will reduce overall compute efficiencies.

A COTS ultra-wideband LNA, RLNA05M54GA, was imple-
mented for the following simulations with gain of 23 dB and
noise figure of 4 dB (Figure 8). The link loss improvement
due to the implementation of LNA is equal to the gain of
the LNA. The noise figure of the DM PNN architecture was
improved by 17.2 dB at 0 dBm optical power. The EM PNN archi-
tecture was improved to 21.3 and 20.24 dB noise figure
at optimal optical input power for the off-chip and on-chip,
respectively.

FLNAþPNN ¼ FLNA þ FPNN � 1
GLNA

(15)

5.6. Spurious Free Dynamic Range Analysis

Finally, the PNN architectures were simulated with respect to
SFDR to determine the range of signal powers that can be proc-
essed. SFDR is defined by the difference between the lower
power limit, the MDS, and the upper power limit, IIP3. The
IIP3 is defined as the RF input power in which intermodulation
distortion products (IMD) begin to dominate. Regarding the pho-
tonic systems presented, the third-order IMD dominates and
therefore will be the focus of this analysis.[3] The MDS is defined
as the thermal noise floor plus the noise figure of the system.
SFDR analysis provides insight into performance metrics
trade-offs and should therefore be optimized for specific applica-
tion needs (Figure 9).

IIP3EM ¼ 4V2
π

π2RL
(16)

IIP3DM ¼ 10� log10
cDML � P2

opt � RL

2� SLD

� �
(17)

SFDR2=3 ¼ 2=3ð Þ IIP3þMDSð Þ
¼ 2=3ð Þ IIP3þ NFþ 174ð Þ (18)

As shown in the previous analysis sections, operating a DM
architecture at low power levels is advantageous for noise figure.
Although beneficial for noise figure, low-power operation of DM
links can reduce SFDR due to an increase in nonlinearity caused
by clipping of the input signal.[29,47,48] To avoid this effect, a DM
link will experience full linearity above 10mW input power.[29,48]

Alternatively, the system can operate below this optical limit, but
the electrical input must be limited to small signals, where the
amplitude of the modulated signal, Im, is within the bounds of
the difference in current bias, IBias, and current threshold, Ith, as
shown in Equation (19).[29] Research in predistortion amplifiers
to compensate for clipping can enable the operation of DM links
without a large reduction in SFDR.[49]

Im ¼ m IBias � Ithð Þ=2, 0 ≤ m ≤ 1 (19)

Figure 8. RF link loss (left) and noise figure (right) of the linear front-end of the PNN with the inclusion of a low-noise amplifier as function of optical
power for different modulation architectures.
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The DM system outperforms EM architectures with respect to
third-order SFDR achieving 103.4 dBHz�2/3 at 15.3 dBm optical
power. While this operating point is optimal for dynamic range,
noise figure and link loss suffer. Unlike the DM PNN architec-
ture, the optimal operating point for EM architectures is optimal
at 20.4 dBm optical power across all RF metrics, resulting in less
critical trade-offs.

6. Conclusion

As neuromorphic photonic technologies mature, operating
frequencies will continue to scale proportionally, resulting in a
critical need for more in-depth RF performance-focused analysis,
evaluation, and design. These efforts will ensure that PNN per-
formance is maintained as the reach of this technology expands
further throughout the wireless spectrum.

High-speed linear operation of silicon neuromorphic photonic
systems was demonstrated via wideband linear weighted sum-
mation. These results demonstrated a 3 dB weighting bandwidth
of 4.7 GHz with a 0.1 dB variation between the weighting values.
These results highlighted the trade-offs between instantaneous
bandwidth and channel count within the MRR design.
Furthermore, these results highlighted the analogous nature
of high-speed PNN operation to that of MWP cancellation
systems, and therefore, the need for highly precise path
matching to maintain weighting accuracy as operating band-
width increases.

Additionally, a key insight generated in this work was that the
overall noise performance of a PNN is determined by the noise
figure of the input layer. Following this first decision, nonlinear
operations preserve noise performance[22] and only link loss
must be compensated for. RF amplification within the O-E-O link
of the photonic neuron can compensate for such losses and
enable scalability. Therefore, RF optimization of PNNs serves
two goals. First, minimize the noise figure of the linear front-
end to improve classification in noisy wireless enviroments.
Second, reduce the link loss of photonic neurons throughout
the network to minimize the gain requirements of electrical
amplification responsible for ensuring scalability. Further

evaluation of the input layer highlighted that current single-
ended EM PNN architectures, which are often deployed, are a
poor choice due to the high noise figure.

The RF analysis section investigated RF performance with
respect to link loss, noise figure, and SFDR for five potential
architectures. The analysis utilized current state-of-the-art com-
mercially available devices. By implementing the nonlinear wave-
guide loss mechanisms within the silicon waveguide and MRR
due to TPA and FCA, optimal optical power operating points
were extracted for each architecture. Furthermore, the imple-
mentation of LNA was explored to significantly improve link loss
and noise figure at the cost of IIP3. Finally, to address the high
noise figure of the EM PNN architectures, a balanced weight
bank was explored to suppress RIN with the caveat of doubling
the complexity of weight bank control.

The conclusions of the RF analysis are convoluted and one
architecture does not outperform all other architectures with
respect to all metrics. For minimal link loss, a balanced EM
PNN linear front-end achieves 16.56 dB loss at 20.4 dBm optical
power, further improved by the gain of a low-noise amplifier. For
a minimal noise figure, a DM PNN linear front-end achieves
22.52 dB at 0 dBm optical power. These optimized architectures
outperform the traditional EM PNN on-chip input layer by
17.6 dB reduced loss and 14.7 dB reduced noise figure. The
DM architecture performs optimally at low powers with respect
to noise figure, which makes this architecture an excellent can-
didate for full cointegration with on-chip active lasers, which are
usually power limited.[50,51] Although the DM architecture
performs well at low powers, the SFDR of the PNN at this point
suffers from the effects of clipping. This mismatch between the
noise figure and the SFDR optimal operating points motivates
the use of balanced EM architecture, which has a well-matched
optimal operating point across all the RF performance metrics of
interest.

In conclusion, RF analysis of silicon PNNs provides insights
into optimizing RF performance by architectural design deci-
sions and optimal operating points. This information empowers
the designer to develop PNNs that reflect the specific needs of the
application. The RF performance improvements gained through

Figure 9. SFDR of the linear front-end of the PNN with (right) and without (left) the inclusion of a low-noise amplifier as a function of optical power for
different modulation architectures.
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optimization result in a broadening of the application space in
which neuromorphic photonics can be deployed.
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