CAP EXAM - USEFUL INFORMATION

January:2005

MECHANICS

Elementary Approach:

- 1. Describe the kinematics (a) Co-ordinates (b) Constraints
- 2. Diagram with all of the forces

3. Statics:
$$\sum F_x = 0$$
; $\sum F_y = 0$; $\sum \tau = 0$

- 4. Rigid Body-Free
 - (a) Motion of C of M: $\underline{F} = m\tilde{a}$
 - (b) Rotation about C of M: $\tilde{\tau} = \frac{\tilde{I}}{\tilde{I}} = \frac{\tilde{\alpha}}{\tilde{I}}$
- 5. Rigid Body-Fixed Point 0

 Rotation about 0 $\underline{\tau}_0 = \underline{T}_0 \underline{\alpha}_0$
- 6. Use energy if "complicated"
- 7. Rotating System use Euler's Equation

$$\tau = \frac{dL}{dt}$$
 in the rest frame

becomes
$$\underline{\tau} = \frac{d\underline{L}}{dt} + \underline{\omega} \times \underline{L}$$
 in the rotating frame.

In the rotating frame, use principal axes as co-ordinates.

Lagrangian Mechanics:

- 1. Choose co-ordinates q1, q2 etc.
- 2. Express kinetic energy (T) in terms of the co-ordinates and their time derivatives \dot{q}_1 , \dot{q}_2 etc.
- 3. Express the potential energy (V) in terms of the co-ordinates.

- 4. Write down the Lagrangian L = T V.
- 5. Use the Lagrange equation

$$\frac{d}{dt} \left(\frac{dL}{d\dot{q}_i} \right) - \frac{dL}{dq_i} = 0$$

for each of the co-ordinates qi as the equations of motion.

ELECTRICITY AND MAGNETISM

- 1. Gauss' Law: $\oint \underline{E} \cdot d \underline{A} = Q/\epsilon_0$ where Q is the charge enclosed within the closed surface. In a dielectric medium $\oint \underline{D} \cdot d \underline{A} = Q/\epsilon_0$ (D = ϵE)
- 2. Potentials:

Point charge: $V = Q/4\pi\epsilon_0 r$

Charged sphere, radius a

Surface potential:
$$V = Q/4\pi\epsilon_0 a$$

$$r > a$$
: $V = Q/4\pi\epsilon_0 r$

Electric field:
$$\begin{cases} \underline{E} = -\nabla V \\ \overline{E}_x = -dV/dx \text{ (one dimension)} \end{cases}$$

3. Magnetic Field:

Amperès Law
$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 \mathbf{I}$$

Long straight wire
$$B = \frac{\mu_0 I}{2\pi r}$$
 (tangential)

Lorentz Force
$$d \underline{F} = dq \underline{v} \times \underline{B}$$

or $d \underline{F} = I d \underline{l} \times \underline{B}$

Lenz's Law
$$V = -\frac{d\phi}{dt}$$

Maxwell's Eqns. div
$$\underline{D} = \rho$$
; div $\underline{B} = 0$
$$cur \underline{l} \, \underline{B} = \mu_0 \, \underline{J} \; ; \quad curl \, \underline{E} = -\frac{d \, B}{dt}$$

THERMODYNAMICS

Ideal Gas:

$$PV = nRT - always$$

$$PV^{\gamma}$$
 = const. for an adiabatic change

$$U = fn(T) only$$

$$dU = C_v dT$$
; $dH = C_p dT$

Central Equation:

with 1st Law:
$$dU = dQ - dW$$

with 2nd law:
$$dU = TdS - PdV (+ HdM + EdQ + FdL + EdZ)$$

Maxwell's Relations:

$$(\partial T/\partial V)_s = -(\partial P/\partial S)_v; (\partial T/\partial P)_s = (\partial V/\partial S)_P$$

$$(\partial S/\partial V)_{T} = (\partial P/\partial T)_{V}; (\partial S/\partial P)_{T} = -(\partial V/\partial T)_{P}$$

Carnot Engine:

$$W = |Q_H| - |Q_C|; \eta = \frac{W}{|Q_G|}$$

Carnot theorem:- reversible heat engines

$$\frac{\left|Q_{H}\right|}{\left|Q_{C}\right|} = \frac{T_{H}}{T_{C}}$$

$$\therefore \frac{Q_H}{T_H} + \frac{Q_C}{T_C} = 0$$

General reversible cycle:

$$\oint \frac{dQ}{T} = 0 \text{ or } \oint dS = 0$$

Note - For the reversible (Carnot) heat engine, the entropy of the total system is conserved.

SPECIAL THEORY OF RELATIVITY

Lorentz-Einstein Transformations

S is a frame at rest. S' has velocity v in the x direction

$$x' = \gamma(x - vt)$$

$$t' = \gamma(t - xv/c^{2})$$

$$y' = y$$

$$z' = z$$

$$x = \gamma(x' + vt')$$

$$t = \gamma(t' + x'v/c^{2})$$

$$\gamma = 1\sqrt{1 - v^{2}/c^{2}}$$

Lorentz contraction

L is the length of a ruler at rest in S

$$L = x_2 - x_1$$

L' is the length measured in S'; it is $x_2 - x_1$ with x_1 and x_2 measured at the same time t'. Use,

$$x_2 = \gamma(x_2' + vt')$$

$$x_1 = \gamma(x_1' + vt')$$

$$\therefore L' = L/\gamma$$

the moving ruler is measured to be shorter.

Time Dilation

A clock in S is at rest. It measures a time interval $T = t_2 - t_1$. Its position x is constant. The equivalent interval in S' is

$$T' = t_2' - t_3' = \gamma \Gamma$$
 from above.

That is T < T'. The time interval registered by the moving clock is less than the time interval in the frame S'. The moving clock runs slowly.

<u>Velocities</u>

$$u'_{x} = x'/t' = (u_{x} - v)/(1 - u_{x}v/c^{2})$$

 $u'_{y} = y'/t' = u_{y}/\gamma(1 - u_{x}v/c^{2})$

Doppler Shift

$$\omega' = \omega \sqrt{(1 - v/c)(1 + v/c)}$$
 receding
 $\omega' = \omega \sqrt{(1 + v/c)(1 - v/c)}$ approaching

Dynamics

Particles:
$$E^2 = E_0^2 + p^2 c^2$$

with $E = mc^2 = \gamma m_0 c^2$; $E_0 = m_0 c^2$; $p = mv$

Photon, Neutrino $m_0 = 0$; $E_0 = 0$; E = pc

Conserve momentum and energy.

STATISTICAL MECHANICS

<u>Microstates</u>: Defined by giving the state of each particle in the system. Every accessible microstate is equally probable.

For a system composed of two parts, with numbers of accessible microstates Ω_1 and Ω_2 , for the system $\Omega = \Omega_1\Omega_2$. The temperature of a system is $\frac{1}{k_BT} = \frac{d\ln\Omega(E)}{dE}$.

Boltzmann Factor: The probability that a system is in a microstate r when in thermal equilibrium with a reservoir at temperature T is,

$$P_{r} = e^{-\beta E_{r}} / \sum_{r} e^{-\beta E_{r}}$$

Alternatively,

$$dP(E) = g(E)dEe^{-\beta E} / \int g(E)dEe^{-\beta E}$$

where $\beta = 1/k_BT$, E_r is the energy of state r and g(E) is the density of states.

Mean Value: For a system in equilibrium at temperature T

$$\overline{a} = \sum_{r} a_r P_r$$
.

Partition Function: $Z = \sum_{r} e^{-\beta E_r}$

Then,
$$\overline{E} = -\frac{d\ln Z}{d\beta}$$

 $P = kT(d\ln Z/dV)$
 $F = -kT\ln Z$
 $C_V = -(d\beta/dT)(d^2\ln Z/d\beta^2)$

Chemical Potential $\mu = -kT(dlnZ/dN)$

Classical and Quantum Gases:

Classical: All microstates are allowed. Bose-Einstein only one of (0110), (1010), (0011).

Fermi-Dirac: (0012) is forbidden (1347) is good.

Mean occupation: Classical:
$$\begin{split} f_s & \propto e \\ \\ Bose: & f_s = \frac{-\beta \epsilon_s}{e^{\beta(\epsilon_s - \mu)} - 1} \\ Fermi: & f_s = \frac{1}{e^{\beta(\epsilon_s - \mu)} + 1} \end{split}$$

QUANTUM MECHANICS

Schrödinger's Equation:

$$\begin{split} \hat{H}u &= Eu \quad (time-independent \ potential) \\ u(r,t) &= u(r)e^{-iEt/\hbar} \\ \psi &= \sum_n c_n u_n; \quad \sum_n c_n^2 = 1 \\ c_n &= \int_n u_n^* \psi d\tau \end{split}$$

New Basis

$$v_{n} = \sum c_{m}u_{m}$$
$$\int v_{m}^{*}v_{n}d\tau = \delta_{m,n}$$

Operators

$$\hat{x} = x$$
; $p_x = -i\hbar \frac{d}{dx}$, $\hat{H} = \frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V$

Boundary Conditions

$$V = \infty$$
 $u_1 = u_2$
 $V = \text{step}$ $u_1 = u_2$ and $\frac{du_1}{dx} = \frac{du_2}{dx}$

Time Dependence

$$\mbox{e.g. } \psi(x,t) = \frac{1}{\sqrt{2}} \; (\mbox{u}_{\alpha} \mbox{e}^{-i \mbox{E}}_{\alpha} \mbox{t/\hbar} \\ + \mbox{u}_{\beta} \\ + \mbox{u}_{\beta} \\) \label{eq:psi_eq}$$

Hence interference.

Perturbation Theory

$$E_{m} = E_{m}^{0} + H_{mm}' + \sum_{k} \frac{\left|H_{mk}'\right|^{2}}{E_{m}^{0} - E_{k}^{0}}$$

where
$$H'_{mk} = \int u_m^* H' u_k d\tau$$

$$u_{m} = u_{m}^{0} + \sum \frac{H'_{km}u_{k}^{0}}{E_{m}^{0} - E_{k}^{0}}$$