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Instructions: Please write your solutions to different problems on separate booklets (and write your
name on each), as they will be marked by different people. It is practically impossible to answer all
the problems in the time given. Do not feel frustrated by that. Rather, try to select the problems
that will best match your abilities.

Question 1: Polarisation of light (10 points)

A beam of light passes through a first polarizer, then a birefringent thin plate and then a second
polarizer, at normal incidence (see figure). The thickness and the refractive indices of the plate
are such that a retardation phase ¢ is introduced between the electric field components along the
extraordinary and ordinary axes, respectively.

polanzcr

axis .
polarizer

“A axis

‘} thin plate

a) If the ordinary axis of the plate makes an angle @ with respect to the first polarizer and if the
second polarizer is orthogonal to the first one, find the expression of the intensity after the second
polarizer as a function of the intensity I rncasurod after the first polarizer.

b) What is the thickness of the birefringent plate and the angle 6 necessary for the intensity after
the second polarizer to be I;/2. The wavelength is\, = 600nm and the ordinary and extraordinary

indices are n, = 1.544 and n, = 1.553. Note: the solution for § and ¢ is not unique, however a simple
solution can bc found for Whl(‘h numerical values are obtained easily.

¢) If a second retardation plate, identical to the first one, is inserted between the two polarizers,
explain how to obtain a configuration such that the intensity after the sec ond polarizer is equal to I,

]llStliV your answer.
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Question 2: Collision of hard spheres (10 points)

A hard sphere of radius R and momentum p hits a second sphere, identical to the first but a rest
(see figure below). The only force in action is a contact force exerted by one sphere upon the other,
directed along the straight line that goes through the centers of the two spheres. This force is very
intense, acts during a very short time and gives the sphere at rest a momentum q. The momentum of
the first sphere following the collision is p’. The distance between the center of the second sphere and
a line parallel to p going through the center of the first sphere (the impact parameter), is denoted b.
Assume that the collision is elastic.

Express, as a function of the parameters of the problem (b, R and p), the momenta p’ and q of the
two spheres after the collision (in size and direction).

Question 3: Superconducting sphere in a magnetic field (15 points)

A type-I superconductor has the property of excluding any magnetic field from its interior. Thus, if a
superconducting object is placed in an external magnetic field, a current density K (current per unit
length) is induced at the surface of the object, such as to cancel the external magnetic field inside
the object. Consider a superconducting sphere of radius a, subjected to a uniform magnetic field
B, = Byz. The goal of the problem is to calculate the net magnetic field everywhere outside the
sphere and the associated induced surface current density K. The problem is static (nothing changes

as a function of time).

a) Knowing that the only current source is on the surface of the sphere, explain why the field B
outside the sphere may be written as the gradient of a function outside the sphere : B = —V®, and

why @ obeys the Laplace equation V2® = 0.
b) Explain why the component of B normal to the sphere must vanish at the surface.

c) Find ® everywhere outside the sphere.

d) Show that the component of B parallel to the surface is discontinuous at the surface, and that its
value just above the surface is proportional to the current density K. Then proceed to calculate the
current density K.

Note : The general solution to Laplace’s equation in spherical coordinates, for a problem with
azimuthal symmetry, is

2(r,0)=>" (A,rl + T%) P(cos®)

l

where A4; et C; are constants and where P,(z) is the Legendre polynomial of order {. In particular,

Rlz)=1 , Pz)==z , Pz(x)=%372_%
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and higher polynomials may be calculated from the recursion relation :

(+ )Py, () = 2+ Dzh(z) - IP_,(z)

Maxwell’s equations, in the CGS system, are:

V-E =4mp V-B=0
10B 10E 4r

The gradient operator in spherical coordinates is :

L0 10 1 0
v_r5;+e;—8—9+wrsin9%

Question 4: Landau levels (15 points)

Consider an electron of charge e < 0 and mass m subjected to a uniform magnetic field B = Bz
and confined to the zy plane (no motion along the z direction possible). The Hamiltonian takes the

following form :
i e, \?2
H=_ (P-Za).
2m (&

We will adopt the Landau gauge : A = (0, Bz, 0).
a) Show that the possible electron energies are those of a one-dimensional harmonic oscillator of
frequency w, = eB/mec, the cyclotron frequency.
b) If we call ¢, the normalized eigenfunctions of the harmonic oscillator, what are the eigenfunctions
of the hamiltonian in the present case? What are the quantum numbers that label the eigenfunctions?
c) What is the degeneracy of each energy level in a system of size L_ x L,? Use periodic boundary
conditions along the y axis.

d) We now add a uniform electric field E = EX. After a suitable modification of your solution, show
that the electric field lifts the degeneracy of the energy levels. What are the new values E’ of the
possible energies with this perturbed hamiltonian H'?

Question 5: Linear Stark Effect (15 points)

Consider a hydrogen atom in a constant electric field E = F,2 oriented along the z direction (neglect
the electron spin and assume that E, is weak compared to the Coulomb field of the atom). The atom
is coupled to the electric field by the interaction term

W=-D-E

where D = ¢R is the dipole moment and g is the electric charge.

a) In the absence of field, the hydrogen atom is prepared in the first excited state of energy B, =
—E;/n* where n = 2 and E} is the ionisation energy of the atom. Show that within the n = 2 Hilbert
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subspace &,, the electric field only couples the 2s (£ = 0) and 2p, (£ = 1,m = 0) states. In the matrix
representation, show that the total Hamiltonian H = H, + W in &, reduces to

_ E, 3qa,Ey
(H)E? N <3anEO E, '

where aq is the Bohr radius and H, is the Hamiltonian in the absence of electric field.

b) Show that the electric field induces a dipolar moment.

c) At time ¢ = 0, the system is prepared in the eigenstate 2s of H,. What is the probability at time
t > 0 to find the atom in the state 2p, ?

Note: Eigenfunctions ¢, ,,,(7,8, @) of the hydrogen atom:

— 1 U ~r/2ay
1./12,0,0(7",9,90)—“\78——;—;2‘ (1 2%) e

P r,0,0)=F -
2,1,:§:l( (P) 8\/7?8 ag

-
r,6,p) =——=—— L
Yo10(7,0,90) 1/omad 4

Useful integral:

Question 6: Relativistic retardation of clocks (10 points)

The space shuttle follows a circular orbit of radius r = Rg + h around the Earth (Rg is the Earth’s
radius [6378 km| and h the shuttle’s altitude [~ 200 km]).

a) Suppose that an extremely accurate atomic clock is carried by the shuttle. Because of the shuttle’s
speed, this clock lags behind its twin, which remained on the ground. Express this lag (defined as the
fractional change AT/T in the “period” of the clock) as a function of r, M, G (the gravitationnal
constant) and c (the speed of light). Neglect the Earth’s rotation. Make the necessary approximations,
knowing that the shuttle’s speed is small compared to c.

b) The Earth’s gravitational field can also modify the flow of time, according to Einstein’s general
relativity. This retardation may be related to the variation of the wavelength A of a light wave

propagating in the vicinity of the Earth. One shows that the combination

ik

~
7

is constant during propagation, where

9= 2
is the gravitational radius of the nearby object (here, the Earth). Explain how to calculate the
retardation of a clock located on the ground compared to an identical clock located at an altitude h,
due to this effect.
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c) For the clock aboard the shuttle, this last effect is opposite to the one calculated in (a). Do you
think it is more important, less important, or of equal importance? In other words, which one of
the two clocks will really lag behind once they are brought back together? Justify your statements
quantitatively. You may neglect the variation of g between the ground and the shuttle.

d) Would this be different for an atomic clock in a satellite with an orbiting radius of 20 000 km, like
those of the GPS (Global Positioning System)?

Question 7: Partition function and thermodynamics of the Van der Waals gas (10 points)

The partition function of a Van der Waals gas may be written as

N
3N/2 a N
Z(T,V)= 2mmkgT) [(V — Nb)exp (_k T——V>J

1
NI (

where T is the absolute temperature, N the number of molecules in the gas, V' the volume, m the mass
of each molecule, kj is Boltzmann’s constant, h is Planck’s constant and a, b are positive constants.

Remark: each of the sub-questions below, from (a) to (e), can be answered in any order.

a) Explain in a few words the origin of the term (27rkaT)3N/ 4,

b) Find the relation between T and V in an adiabatic process. (recall S = — (8F/dT), with
F = —kgTInZ. Stirling’s formula : InN!~ NInN — N.)

c) Find the work done by a Van der Waals gas that changes from a volume V} to a volume V] at
constant temperature. ( Recall p = — (0F/0V);).

d) Consider and isolated Van der Waals gas (constant energy) enclosed on one side of a box. A hole
is opened between the two sides of the box. Without adding or removing energy, one lets the gas
occupy the two sides of the box such that the volume occupied by the gas changes from Vj to V.
Compute the corresponding change in temperature. Does the system cool down or warm up?

e) Find an expression for the fluctuations of the total energy at equilibrium.

Question 8: Evaporation of a planetary atmosphere: Jeans model (15 points)

The purpose of this problem is to study the evaporation of an isothermal planetary atmosphere
obeying the Maxwell distribution. We have adopted the following notation: dJ is the total number of
particles crossing an elemental area ds per unit time; this flux d.J is related to the flux density j (flux
per unit area) through j = dJ/ds; n is the particle concentration in the atmosphere (i.e. the number
of particles per unit volume).

In the case of particles moving with velocity v and crossing an elemental area ds = ds # (¥ is the unit
vector perpendicular to ds), one has dJ = n v-ds. In what follows, j = n v is the flux density vector.

a) Show that the elemental flux density of particles having momentum p = mv within the momentum
space volume element dQ2 = dp,dp,dp, has the following distribution:

P 4 —p*/2mkT
Ui m (2rmkT)3/2 ¢ da,
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where m is the mass of a particle, £ is the Boltzmann constant and 7" is the temperature of the
atmosphere which is considered to be a ideal gas. Recall :

/oo dze /%" = \/org?

b) Show that the atmospheric particles moving away from the planet and having a kinetic energy
larger than a given threshold A give rise to

. A
o~ AIKT (s

n 2kT )
kT

i=5mV

c) Give the expression for the minimal velocity required of a particle to overcome the gravitational
attraction of a planet of mass M and radius R. This escape velocity will be referred to as vy,.

d) Assuming the planet’s atmosphere is homogeneous, isothermal, in hydrostatic equilibrium, and
obeys the ideal gas law (P = pkT/m with p = nm), show that one can define an effective thickness
for the atmosphere Hyg = kT/(mg) (g is the gravitational acceleration on the planet’s surface).

The exobase is the level of the planetary atmosphere at which the mean free path of the particles is
equal to H, ;. The region above is called the exosphere. In the exosphere, the atmosphere is not dense
enough to allow retention of the particles (via collisions) whose velocity is greater than the escape

velocity.

e) Presuming Hg is small compared to the planet’s radius (i.e. the area covered by the atmosphere at
any altitude is approximately equal to the planet’s surface area); show that the atmosphere evaporates
as a function of time t according to a relation of the type n(t) = n, x e /7, where n, is the initial
concentration of the particles and 7 is a characteristic time equal to:

2Heff muv? /Qk'T m’Ul2b ! ]. 27TkT 2 /QkT m'U,2b =3
= &t oMY Jozpy smeiD = 4/ —— ™ 14+ — .
- T IV m © ok
mm

f) Knowing that the solar system formed some 4.5 billion years ago, give an estimate and compare
the present concentrations of nitrogen molecules within the exospheres of the Earth and the Moon. It
should be verified that Hg is indeed small compared to the respective radius of the bodies involved.
One can assume that the initial concentration, n,, was the same for the Earth and the Moon.

One can use the following values: the gravitational constant G' = 6.67 x 107! SI, the radius of the
Earth Ry = 6378 km, the radius of the Moon R; = 1738 km, the mass of the Earth M, = 6.0 x 10*
kg and the mass of the Moon M, = 7.3 x 10?2 kg, the mass of a nitrogen molecule m = 4.7 x 10~26

kg, T =900 K and k = 1.38 x 1072 J K1,
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