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ABSTRACT:The development of dopant-free organic hole transport majgrizd
(HTMs) is critical to the commercialization of perovskite solar cells (PSCs). litdeef;
dopants are the key determinants for reducing photovoltaic stability. He}eﬂﬁlem“ )\/
designed and synthesized three mexylaminotriazine molecular glass d&ivéfives oS
containing triphenylamino moieties with an easy and low-cost process. All tﬂ_ e e
compounds show good solubility aim-forming ability, and they show promising ,  *eseesesessse:
results as HTMs in PSCs. The PSCs fabricated with these mexyaminotriazpe- !
substituted HTMs reach eiencies up to [power conversionciency (PCE)] 6 ——gtPA @f @
12.50% (12.40% stabilized). Furthermore, we also measured the long-term stability ofere || ™
PSCs using these HTMs, and the devices showed noasigdecrease of their 2| —— Spiro-OMeTAD (dopant free) \\
initial PCE after storage in the dark under an atmospheric environment with a rel§ye—>—"—07"""0s o8 10
humidity range of 40 to 50% for over 1000 h. This work indicates that (V)
methylaminotriazine derivatives are potential hole transport layer candidates for

PSCs and provides strategic guidance for the further design of dopant-free HTMs.

KEYWORDS:perovskite solar cell, methylaminotriazine derivative, molecular glass, dopant-free, hole transport material

o

INTRODUCTION The hole transport layer (HTL) has a great signce as

Organic inorganic halide hybrid perovskite solar cells (PSngntlm[;prtantfpaLt ?f the PSthanr:j IIS mvpl;:_iq['m ﬂ?heatd. ¢
are the utmost encouraging photovoltaic technologies f giraction of photogenerated holes, inhibiting the direc
future commercialization owing to their simplicity, lowtontact between the perovskite and metal electrode (€.g. Ag,
fabrication cost, ancexibility. They are also considered as” % 2293 Al) and suppressing the charge recombination
leaders of the third-generation photovoltaic cells aft sses.”~ At present, according to their material properties,

crystalline silicon and thilm solar cells. Hybrid organic e HTMs can be roughly divided into organic polymers [e.g.

inorganic PSCs have unique photovoltaic Characteristi(pé)ly(4-butyltr|phenylamme),commonly known as poly(TPD),

: : . : - grid poly(3-hexylthiophene-2,5-diyl), commonly known as
including adjustable band gap, strong and wide lig 1114 17 ;
absorption, excellent electron mobility, and long carrig 3HT], small organic molecules (e.g. tetrbiftt{

di usion length and lifetime’ In 2009, Japanese scientists 4,4-dimethoxydiphenylamino)]phenyliethene and 3,4-ethyl-

. ey . : nedioxythiophen&}® and inorganic materials (e.g. Cul,
Miyasaka et al. took the lead in using perovskite materials rOX' NiO, V05, and CUSCNJ® 28 The most commonly

dye-sensitized solar cells as light-absorbing materials, IS&d one is organic small-molecule materials because of the
methylammonium lead iodide (@NH;Pbk, MAPDY)- rocessing conditions, which are highly compatible with the

sensitized TiQas the anode, to obtain a power Convers'orﬁerovskite ) Spiro-OMeTAD and polytriarylamine (PTAA)

€ ciency (PCE) of 3:8/0.]” 2011, P?rk and his 9roub *are the most commonly used HTMs for PSCs, which can
increased the conversioncency to 6.5% through technical usually provide an eiency higher than 22%. However, the

improvementsHowever, all the devices reported at that stage . quction conditions of spiro-OMeTAD are complicated,

showed extremely poor stability. In 2012, Lee and Snai o :
introduced the h)(/)lg transport ymaterial (HTM) ,2.2- quiring ve synthesis steps and an ultra-low temperature

tetrakis-lN,N-dip-methoxy-phenylamine)-9spirobi uorene _
(spiro-OMeTAD), which improved the@ency of the solid- ~ Received: July 9, 2021
state PSCs up to 169%viore importantly, the unencapsulated Accepted: October 11, 2021
device showed excellent stability: the photovoltaic performarigePlished: October 20, 2021
was not signcantly degraded after 500 h. Since then, PSCs

have received a great deal of attention, and according to recent

reports, PSCs have reached a recarigrecy of 25.5%.

© 2021 American Chemical Society https://doi.org/10.1021/acsaem.1c02013
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( 78 °C),*° which make spiro-OMeTAD expensive ($300Scheme 1. Molecular Structures of gTPA, gTPA2, and
USD/g), and the cost of PTAA is twice that of spiro-gTPA2-OMe
OMeTAD. In addition to that, the use of spiro-OMeTAD

materials generally requires doping with lithium bis- HN HN”

(tri uoromethylsulfonyl)imide (Li-TFSI) andeftbutylpyr- Ay Ay
idine (4¢BP). It was also reported that dopants weittathe I I
stability of the devic&sTherefore, the development of low- HNJ\N/)\NH HNJ\N/)\NH

cost dopant-free HTL materials is extremely important for the
developing PSC industry.

Organic small-molecule materials are regarded as the most

suitable materials to replace spiro-OMeTAD due to their N N
advantages, including wellrg®l molecular weight, the ability /©/ \©\
to passivate the defects of the perovskite surface, and high R R
repeatability, which have been widely studied. Triarylamines

(such as triphenylamine, and TPA), as groups with good

stability and solubility, are often used as building blocks for ph” " ph

small organic molecule HTMs. As early as 2014, Ko fabricated
new types of HTMs named tNs{l-bis((4-methoxyphenyl)-
amino)biphenyl}-amine (OMeTPA-TPA) and MNis{-bis-

((4 -methoxyphenyl)amino)phenyl}-fused amine (OMeTPA-

ciency), which is a little higher than that of dopant-free
FA) with the planar TPA as the side or core unit. They applie y) g P

X . . er%T)airo-OMeTAD devices. The projected synthetic cost of these
it to PSCs, and the PSCs with OMeTPA-FA achieved the beskierials is in the 10$/g range, which is much lower than

PCE of 13.63%, W2hich is comparable to devices with Spieriro-OMeTAD. In addition, they also show outstanding
OMeTAD (14.68%)" There have been many reports of smallgiapility. After nearly 1000 min of continuous light soaking

molecules based on %Birobiuorene, thiophene, triazatrux- (AM 1.5 G illumination), gTPA2-OMe-based PSCs maintain
ene, and carbazole as HTMs for PSCSIn all these cases, nearly 90% of their initial eiency. They also exhibit better
the.rolle of the core is to prevent the crygtalllzat|on of the Tpﬁ)ng-term stability (no signant decrease in their initial PCE
moieties. However, to the best of investiatmwledge, the ey being stored in a dark ambient atmosphere with a
study on mexylaminotriazine as the core of the HTM is Ver§umidity range of 4@0% for over 1000 h). These molecular

scarce. Mexylaminotriazine Qerivatiyes are able to form Vefi¥sses reveal a very promising potential for commercial
stable glasses and are easily functionalizable. Therefore,atﬁsncaﬁons of PSCs.

methylaminotriazine group became an attractive building bloc
to easily design and synthesize HTMs that form amorphous EXPERIMENTAL SECTION

thin - Ims without qrystalllzatlaﬁ. Synthesis. General. 2-Mexylamino-4-methylamino-6-(4-amino-

In 2017, Nunzi and Lebel et al. used the 3,4,9,10phenylamino)-1,3,5-triazitfe 2-chloro-4-methylamino-6-mexylami-
perylenetetracarboxylicdiimide-functionalized mexylaminotrigy-1,3,5-triazinelN-(4-aminophenyl)diphenylamftieN-(4-amino-
zine derivative (PDI-glass) as a thimdayer to modify the  phenyl)N,N-bis(4-methoxyphenyl)amiffeand gTPA® were syn-
interface of the electron transport layex 160the rst time, thesized as described in the literature. All the commercially available
for which the PCE increased by §§07¢]nen, they added PDI- reagents and solvents were purchased and used without further
glass and diketopyrrolopyrrole (DPP-glass) as guest accepftd cation. Fourier transform infrared (FTIR) spectroscopy spectra
into poly(3-hexythiophene) (P3HT) and [6,6]-pheny}-C were obtalneq with thinms cast from qe:lfﬁgn KB{%vmdows
butyric acid methyl ester (RBM) to obtain ternary blend using a PerkinElmer Spectrum 65 spectrontdtand NMR

- A : . iﬁﬁwa were obtained using a 300 MHz Varian Oxford or a 400 MHz
organic solar cells with device performance improvements g){iker Av400 spectrometer at 298 K unless noted otherwise. A TGA

38 and 36%, respectivély. . 2950 thermogravimetric analyzer (TA Instruments) at a heating rate

Recently, our team synthesized a new type of methylamingi-50 °C/min under a nitrogen atmosphere was used to analyze
triazine derivative (herein named gTPA) by a simplelecomposition of molecular glasggs,, andT,,, were measured by
condensation of 2-mexylam#imethylamino-6-(4-amino- di erential scanning calorimetry _(DSC) With aTA Instru_me_nts 2010
phenylamino)-1,3,5-triazine ami(4-formylphenyl)- ~ or & TA Instruments Q20 calorimeter calibrated with indium at a
diphenylamine. In order to study the photoelectric propertig€ating rate of 3C/min. Transition temperatures were described
of the material, we conducted a systematic study oimthe after an opening cycle of heating and cooling.

. . Synthesis of gTPA2. 2-Chloro-4-methylamino-6-mexylamino-
thickness of gTPA and achieved a PCE of 2.92% on tri%,%-triazine (09625 g, 2.37 mmol) a)t/nc(4-aminophgnyl)-

traditional MAPhtbased PSC%TO conduct a more in-depth  giphenylamine (0.649 g, 2.49 mmol) were dissolved in tetrahydrofur-
study of this very promising structure (methylaminotriazine) ag (THF, 10 mL) in a round-bottomedask equipped with a

a HTM for PSCs, we synthesized two novel TPA-containingagnetic stirrer and a water-jacketed condenser. The mixture was
mexylaminotriazine derivatives (named gTPA2 and gTPAfhen reuxed for 12 h, at the end of which the volatiles were removed
OMe, Scheme )land systematically compared thece of under vacuum, and GEl, and 1 M aqueous HCl were added. Both
these three materials on the performance of PSCs. Tlléfé"_le(r; were d?]tacher?l; the aqueous layer was ex”aﬁt%d orice more with
resulting materials exhibit excellent solubilitylamtbrming 2Ll and then, the organic extracts were washed with aqueous
ability in common solvents. We conducted a systematic stu HCO,, dried over N&Q, ltered, and dried under vacuum. The

f the th | cal d I ; - £ th idue was puad on a short silica pad using AcOEt/hexanes (2:8
of the thermal, optical, and optoelectronic properties of thegg remove the starting materials and then 7:3 to recover the product).

materials and successfully applied these materials as HTLSofg54 g of compound gTPA was thus obtained (1.55 mmolTH5%).
PSCs. Among them, gTPA2-OMe yielded the best-performing °C; FTIR (CH,CL/KBr): 3410, 3275, 3179, 3058, 3032, 2946,
PSCs, showing a PCE as high as 12.50% (12.40% stabilizetb, 1586, 1504, 1421, 1361, 1313, 1269, 1232, 1181, 835, 808, 750,

gTPA2: R = H
gTPA2-OMe: R = OMe

gTPA
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Scheme 2. Synthesis of gTPA2 and gTPA2-OMe
NH,

64-65 %

gTPA2: R = H
gTPA2-OMe: R = OMe
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Figure 1.(a) DSC scans of gTPA2 and gTPA2-OMe measured at a heating rd@énuh Sfter an opening heatirgpoling cycle. The
exotherm is directed uphill. (b) XRD spectra of the gTPA2 and gTPA2-OMe depositedihas dhia glass substrate.

694 cm®; 'H NMR (300 MHz, DMSQ#;, 363 K): 8.73 (s, 1H), 60 min in a mue furnacé**® The detailed procedure for perovskite
8.51 (s, 1H), 7.77 (dl= 8.8 Hz, 2H), 7.41 (s, 2H), 7.26 Jt 7.6 precursor solution making and spin-coating is reported elééwhere.
Hz, 4H), 7.01 (tJ= 7.8 Hz, 8H), 6.60 (s, 1H), 6.56 (5 4.5 Hz, All the HTM precursor solutions were spin-coated on the MAPbDI
1H), 2.91 (dJ= 4.5 Hz, 3H), 2.23 (s, 6H) ppiiC NMR (75 MHz, perovskite Im at 4000 rpm for 30 s. Solutions of gTPA, gTPA2,
CsDe): 166.0, 164.1, 163.8, 147.4, 140.7, 140.0, 137.0, 136.3, 129.-1PA2-OMe, and spiro-OMeTAD in chlorobenzene solution (CB)
125.2,123.0, 122.6, 121.9, 121.1, 117.6, 27.2, 21.1 ppm; HRMS (&&ire prepared by dissolving 10 mg of gTPA, gTPA2, or gTPA2-OMe
MH™*): calcd for GgHagN; (mV 2), 488.2557; found, 488.2576. or 72.3 mg of spiro-OMeTAD in 1 mL of CB by stirring at room
Synthesis of gTPA2-OMe.Compound gTPA2-OMe was temperature for 6 iF(gure S)I respectively. The ect of dlerem
synthesized from 2-ch|oro-4-methylamino-e-mexylamino-1,3,5-tﬁHO|eCU_|af glasim thlckness_es on the performance of the (_jewce has
zine (4.68 g, 17.6 mmol) anX-(4-aminophenyl)N,N-bis(4- been discussed in th_e prewous_\?\?oIBO nm Au_ was depos[ted on
methoxyphenyl)amine (5.65 g, 17.6 mmol) following the samihe HTL for completing th_e (_jeS|gn _of the device. The active area of
procedure as for compound gTPA, thereby yielding 6.19 g of the i€ PSC was 9 ninThe optimized thicknesses of J&2, BK Ti0,
compound (11.3 mmol, 649%),85°C; FTIR (CH,Cl/KBr): 3405, NP layer (three cycle-coating was optimum), perovskite layer, TPA
3278, 3178, 3036, 2996, 2951, 2833, 1604, 1575, 1503, 1424, 1§485S 1aver, and Au layer were measured #0be120, 450, 80,
1316, 1266, 1238, 1179, 826, 808, 734, 576 #nNMR (300  and 100 nm thick Au electrode layer.

e, DVSO, SE3K) 859 5 11,045 (0,1 762 Gros , Characeriaton, The mapnologeal and sueral anaysee
Hz, 2H), 7.37 (s, 2H), 6.95 (d= 9.0 Hz, 4H), 6.87 (dl= 9.0 Hz,

4H), 6.82 (dJ= 8.9 Hz, 2H), 6.58 (s, 1H), 6.49 (tk 4.8 Hz, 1H), (FE-SEM; S-4800, Hitachi High-Tech, Tokyo, Japan) and an X-ray

~ di ractometer (D8 Discover, Bruker AXS GmbH, Karlsruhe,
3.75 (s, 6H), 2.87 (A= 4.8 Hz, 3H), 2.21 (s, 6H) pprtiC NMR Germany) with an X-ray tube (Cu Kadiation, = 1.5406 A).

(75 MHz, GDg):  166.0, 164.0, 163.8, 154.8, 142.4, 141.0, 140.Q gy absorption in the three compounds (gTPA, gTPA2, and
137.0, 134.3, 125.0, 123.0, 121.9, 121.2, 117.5, 114.7, 55.1, 27.2, 2-OMe) was characterized by ultravidigible (UV vis) and
ppm; HRMS (ESI, MN& calcd for GHiNaN,O, (n2z), near infrared absorption spectroscopy (V-670, Jasco Corporation,
570.2588.2557; found, 570.2570. , , , Tokyo, Japan). The charge transport properties of perovskite and
Device Fabrication. A patterned uorine-doped tin oxide  peroyskite/HTL Ims were studied by photoluminescence (PL) (FP-
(FTO)-glass substrate was sequentially cleaned by sonication W!tgfﬁ)o, Jasco Corporation, Tokyo, Japan). The current density versus
commercial detergent in water, deionized water, and KOH Solutl%“age‘q \/) characteristics of the devices was studied in forward-
for 15 min. The cleaned FTO-glass substrate was treated with oxyg@g#s ( 0.2 to 1.2 V) and reverse-bias (1.28® V) modes at a scan
plasma for 20 min prior to use. A 40 nm;Té@mpact layer (CL)  speed of 0.05 V/s under simulated air mass (AM) 1.5 G illumination
was deposited on the FTO-glass substtaBeookite TiQ using a solar simulator at 100 m\W/amd a Keithley 2401 digital
nanoparticle (NP) colloidal suspension was spun-cast on the Ti@ource meter. The incident photon-to-electron conversiameies
CL by spin-coating at 2000 rpm for 30 s and then thermal-treating @PCEs) of the devices were recorded using a monochromatic xenon
105°C for 5 min on a hot plate, followed by annealing atC 86 arc light system (Bunkoukeiki, SMI-250JA). The geometry of
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Figure 2.(a) UV vis patterns of the dirent HTMs as thinlms. (b) Tauc plot to estimate the band gap of therelit HTMs.

Table 1. Photophysical, Thermal, and Semiconducting Characteristics of gTPA, gTPA2, and gTPA2-OMe

HTM E (eV) E.omo (eV) E umo (V) Ty (°C) conductivity (S/cm) mobility (cffV -s)
gTPA 3.52/5.08° 4.89 1.37 93 38104 2.43x 10 4
gTPA2 4.2%5.45° 4,72 0.49 91 3.% 104 2.66x 104
gTPA2-OMe 4.015.38° 4.40 0.39 85 5% 10* 2.82x 104

®DFT calculationE ymo = Enomo + Ey PBand gapky) estimated from Tauc plots of the UNs absorption coeient.

Figure 3.Energy level diagram of the HOMO and LUMO levels of gTPA, gTPA2, and gTPA2-OMe as simulated at the B3LYP/6-31G(d,p) level.

compounds gTPA, gTPA2, and gTPA2-OMe was optimized viglasses at glass transition temperafyesf(91 and 85C,
density functional theory (DFT) calculations [B3LYP/6-31G(d,p)] with no crystallization observed either by heating or prolonged
with wave function Spart@6 software to assess the energy levels Ogtanding at ambient temperatures. Compound gTPA2-OMe
the highest occupied molecular orbital (HOMO) and IowesthaS a slightly loweF, (85 °C) than its analogue gTPA2
unoccupied molecular orbital (LUMO). b 9 A
ecause of the presenceaxible methoxy groups. No melting
transitions were observed for any of the two gTPA2 analogues,
RESULTS AND DISCUSSION as melting is associated with the presence of crystals, thereby
SynthesisﬁgTPA was synthesized according to ourrevealing the lack of crystalline domains. To further
previous work. gTPA2 and gTPA2-OMe were synthesizeddemonstrate that these organic molecules are amorphous, we
by introducing théN-(4-aminophenyl)diphenylamine groups prepared solutions of the compounds and spin-coatétdshe
directly onto the triazine core by reacting the correspdiiding on glass substrates. As showfigare b, all materials only
(4-aminophenyl)diphenylamines with 2-chloro-4-methylamgisplay a large bulge at about 22, thereby corrming that
no-6-mexylaminotriazine inuring THF, in 6465% yields the materials are completely amorphous. The wide-ranging X-
(Scheme 2 In both cases, the desired products could beaay diraction (XRD) spectra at 22re attributed to the p-
puri ed on a short silica pad using AcOEt/hexane mixtures atacking of the conjugated fragments that trouble charge
varying ratios. Compound gTPA2-OMe contains additionafansport.’
electron-donating methoxy groups in the 4-position of the two The normalized UWis absorption spectra of thims of
other phenyl groups of the triarylamine group, similar to ththese three molecular glasses are shdviguire 2. Each of
benchmark HTL material spiro-MeOTAD. the three compounds (gTPA, gTPA2, and gTPA2-OMe)
Thermal, Optoelectrical, and Semiconducting Prop- shows two absorption peaks at 274/391, 272/319, and 274/
erties. As shown irFigure &, mexylaminotriazine derivatives 317 nm, respectively. Compared with gTPA2 and gTPA2-
gTPA2 and gTPA2-OMe are all capable of forming stabl®Me, gTPA is sigriantly red-shifted. This is because gTPA
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Figure 4.(a) J V curve of TPA glasses showing (a) conductivity and (c) hole mobility. (8) Yatkves received from hole-only devices with
di erent HTMs. The hole-only devices prepared have the structure (FTO/HTM/Au). The inset siiéw¢ tueve recorded from the SCLC
region.

contains a more strongly conjugated system with imine and gap with 4.23 eV, followed by compounds gTPA2-OMe (4.01
additional phenyl ring. In contrast, gTPA2-OMe is cagrily eV) and compound gTPA (3.52 eV). The fact that compound
blue-shifted, indicative of a wider optical band gap, which ¢&PA shows the smallest calculated HOM@MO gap can
mainly related to the methoxy group on the side of gTPAZe rationalized by the fact that its chromophore contains an
OMe and provides higher tunability of its HOMO energyadditional phenyl group. This is especially apparent in view of
levef:® According to the absorption ceent, a Tauc plot of ~ the HOMO orbital of compound gTPA, showing an extended
( h)?versu$ is used to determine the optical band'§&p,  HOMO orbital. Additionally, the LUMO orbital of compound
as shown ifrigure B. The optical band gaps of these threegTpa is completely located on the chromophore itself, unlike
moIepuIar glass materials were estimated from the Tala'Smpounds gTPA2 and gTPA2-OMe, in which the LUMO
relation, as shown ireble 1 gTPA2 and gTPA2-OMe both  pitg| is partially delocalized on the triazine ring.
have a wide optical band gap (approximately 5.4 eV). We measured the conductivity) @nd hole mobility () of
Aminotriazines are known to adopt severaret  yhage three novel HTL molecular glasses. It should be noted
conformations of similar energy, which interconvert slowly,o¢ 5| materials are dopant free. The conductivity is obtained
In the present case, conformational equilibria are not eXPected . the linear current densitoltage J V) curve in a hole-

to impact orbital energy levels as they involve remote groupg,, yevice with the structure FTO/molecular-glass (opti-
Therefore, DFT calculations were performed on a sing ized 80 nm thickness)/Au under dark and ambient

conformation with both aryl groups pointing in the same o N b
direction. The HOMO and LUMO energy levels are listed inCOﬂdItIOFIS. The equation = JdV* is used to calculatg

Table 1 and the frontier orbitals are displaye#igure 3 (Figure 4). We also plotted Figure & tth Vcurves on a
Figure Sahows an energy level diagram of novel HTMs Witl%Og sca!e to reveal the hole-only devu_:e trap_dens[ty. The
perovskite. Wend that all three novel mexylaminotriazine c@/culation method for the defect denslfyi¢ mentioned in
HTMs match well with the energy levels of perovskite®U' prewoys'reseal"ceht is di cult (Figure b) to obtain the
Interestingly, the large energy barrier between the conducti§@P- lled limit (TFL) voltageVr, and the entire scanning
band of the perovskite and tBgy of the HTM can voltage range (@ V) can almost pg regarded‘taap-freé .

e ectively prevent undesired photogenerated electron transfefarge transport. The hole mobility of the three HTMs is
especially reducing the charge recombination rate at te®tained from the space-charge limited current method
perovskite/HTM interfac®. From the calculations, the (Figure ¢), using the MottGurney lawJ=9  V/8d).
HOMO and LUMO energy levels increase from compoundhe tted slope”” V is shown in the zoomed portion of
gTPA, which contains an electron-withdrawing imine group, foigure 4. The conductivity and hole mobility are calculated
compound gTPA2-OMe, which is substituted with twoand listed inTable 1 gTPA2-OMe exhibits the highest
electron-donating methoxy groups. Upon seeing theonductivity and hole mobility, meaning that it carries the best
HOMO LUMO gaps, compound gTPA2 shows the highespotential as a hole-transfer material. In addition, the hole
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Figure 5.Top-view SEM images of perovskite with (a) gTPA, (b) gTPA2, and (c) gTPA2-OMe. (d) PL spectra of FTO/perovskite and FTO/
perovskite with derent TPA molecular glasses, with excitation at 500 nm.

mobilities of all three TPA glasses are mostly in similar rangesVe fabricated i p type devices with a structure of FTO/
as the ones measured elsewhere for spiro-OMeTAD. TiO, CL/BK TiO, NP/perovskite/molecular-glass/Au, by
The three molecular glasses were spin-coated on top of tinéroducing gTPA, gTPA2, and gTPA2-OMe as well as spiro-
perovskite to investigate théin-forming abilityKigure SB OMeTAD as HTMs. The schematic diagram of the device is
All these three materials form smodtts on the perovskite, shown inFigure S4digure S4bd shows the cross-sectional
meaning that they all have good solubilities and forrSEM images of the optimized devices, in which we clearly
amorphous thinims. This is further veed by SEM Figure distinguish thelm thickness of each individual layer.
5). The perovskites coated with gTPA and gTPA2 are rougherThe J V curves with the varying cgaration of TPA
than the one coated with gTPA2-OMe. Arguably, the smooitievices and IPCE spectra are showiyime &,b. The device
nature of the gTPA2-OMdm will improve the contact parameters are summarizedTable 2 The device with
between the perovskite and HTM layer, thereby improvingTPA2-OMe as a HTM under reverse bias shows a high PCE
hole extraction. Additionally, avoiding direct contact betweasf 12.50%, with a short-circuit current dendidyof 21.21
the perovskite layer and the electrode improves the performmA/cn?, an open-circuit voltag¥,0 of 0.95 V, and all
ance of the devices. factor (FF) of 0.62, which is comparable to theemcy of
Figure 8 exhibits the PL spectra of the perovskiteboth devices using dopant-free spiro-OMeTAD (11.25%). We
uncoated and coated with each of the TPA glasses. Theudied the hysteresis index (HI) of each device by measuring
pristine perovskitelm shows a high-intensity peak (purple J V in both forward (FS) and reverse scan (RS) directions
line). Upon coating the perovskite with di erent HTMs, (Figure Sp The HI is usually calculated using the formula:
the PL intensity decreases. It was reported that such @ _ PCBeverse® PCEomar53
quenching ect happens for steady-state®’PCompared M = PChreverse) ;" the His of both gTPA2-OMe and
with the pristine perovskitkn, the PL intensity drops around spiro-OMeTAD (dopant free) devices are 0.27 and 0.31. Both
22, 8, and 3%, respectively, after coating with gTPA, gTPAgpes of devices clearly show signi hysteresis. The PSCs
and gTPA2-OMe. We characterized the PL spectrum of FTQ#ith gTPA2 gave a relatively lower PCE of 7.57%, Jyitli a
perovskite/spiro-OMeTAD, as shownFigure 8 (green- 17.31 mA/cry aV,. of 0.78 V, and a FF of 0.56. The PSCs
line). We see that the degree of PL quenched by undopeauth gTPA gave the lowest PCE (5.44%), withad 11.43
spiro-OMeTAD is equivalent to that of gTPA2 and both arenA/cn?, aV,. of 0.86 V, and a FF of 0.55. We calculated the
lower that of gTPA2-OMe. Strong PL reduction sigrhat average PCE of @rent HTM molecular glass-based PSCs, as
the perovskitelm coated by the HTM undergoes charge shown inFigure 6 f, and the detailed parameters are
transfer at the interface between both layers; in additiospymmarized iffable 2 We conclude that the main reason
gTPA2-OMe appears to be morecient in extracting holes for the low performance of gTPA-based PSCs is the, low
from the perovskite andestive in impeding charge-carrier Conversely, PSCs with gTPA2-OMe providedhigihich
recombination. Quenching the PL intensity demonstrates thbenets from the higher conductivity of gTPA2-OMe, which
the novel molecular-glasses promot@&at charge collection means a higher carrier transport ability. The smaller series
like spiro-OMeTAD. resistanceR, = 4.6 -cn?) also witnesses it. In addition, the
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Figure 6.(a) Reverse biak V curves, (b) IPCE spectra and integrdted PSCs based on dopant-free gTPA, gTPA2, gTPA2-OMe, and spiro-
OMeTAD as HTMs. (c) Histograms of PCEs measured in 20 devices of gTPA. (d) Histograms of PCEs measured in 20 devices of gTPA2. (e
Histograms of PCEs measured in 20 devices of gTPA2-OMe. (f) Histograms of PCEs measured in 20 devices of spiro-OMeTAD (dopant-free

Table 2. Photovoltaic Parameters for PSCs with Dopant-Free gTPA, gTPA2, gTPA2-OMe, and Spiro-OMeTAD HTMs

1 (mA/cm?) Voc (V) FF PCE (%) R( cm Ry o)

gTPA highest 11.43 0.86 0.55 5.44 25.2 11
average 11.280.84 0.8 0.03 0.54 0.02 5.0&¢ 0.34

gTPA2 highest 17.31 0.78 0.56 7.57 13.0 1.0
average 15.441.38 0.7% 0.03 0.5% 0.05 6.5% 0.88

gTPA2-OMe highest 21.21 0.95 0.62 12.50 4.6 1.7
average 20.430.27 0.9 0.01 0.6 0.01 11.5% 0.31

spiro-OMeTAD (dopant free) highest 20.57 0.91 0.60 11.25 7.8 15

average 20.4.0.73 0.9% 0.03 0.5% 0.03 10.5¢ 0.31

larger shunt resistand®,(= 1.7 k -cn¥) explains the larger the 1, values measured under standard solar AM 1.5 G
V,. and FF of the gTPA2-OMe devit¥' illuminatior”

From the IPCE dataF{gure 6), we see that the device  We measured the current output at the maximum power
based on gTPA2-OMe exhibits the highest photwrent point to evaluate the steady-state power output of PSCs with
response at 420 nm, with an EQE of 98%. To prove thdi erent HTMs. As shown iRigure 7 gTPA, gTPA2, and
accuracy of thel V measurements, we calculated thegTPA2-OMe-based devices maintain a very staidaey of
integrated current density from the IPCE spectrum, a8.07, 7.19, and 12.40% for around 200 s continuous exposure
shown inFigure 6. The integrated current densities of the to 1 sun illumination. Reproducibility of the PSCs was assessed
devices with gTPA, gTPA2, and gTPA2-OMe are 11.18, 17.28) 20 devices, as shownFigure S6AIl devices show a
and 20.86 mA/cfnrespectively, which are in agreement withrelatively narrow distribution, witnessing good reproducibility.
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applicationFigure 8 shows the water contact angle of each
perovskite/molecular glass HTNin. Like the commonly
used spiro-OMeTAD, we see that these HTMs also form a
smooth and uniformim on the surface of the perovskite
(Figures 5and S3. This shows that these HTMs are
compatible with high-quality perovskite crystals, and the
smooth hydrophobic surface results in the formation of a
similar large water contact angle as with spiro-OMeTAD. This
reveals a certain moisture-protectieeteon the perovskite
material, which is highly hygroscopic. Perovskite/gTPA2-OMe
has the highest water contact angle®ofr@ficating that it has
larger hydrophobicity, which may reduce the penetration of

Figure 7.Steady-state eiency at maximum power point of devices moisture into the perovskite layer, a cause of perovskite

with gTPA, gTPA2, and gTPA2-OMe and spiro-OMeTAD (dOpa”tdecomEosition, thus improving the device stalfliture

free) under continuous AM 1.5 G illumination for around 200 s. 8a,b).5a "This may seem surprising given the fact that gTPA2-
OMe possesses NH groups that can engage in hydrogen

Device stability is an important criterion for evaluatindhonding. However, it has been estimated that rougl@9%0

whether PSCs can be commercially competitive. We measuggtthese NH groups is hydrogen—bondedgéf‘ and this

the light soaking stability and long-term stability of PSCs witfiaction is even higher at ambient temperature. The result of

the di erent molecular glass HTMs. Unencapsulated devic@§is extensive hydrogen bonding is to further expose the

were monitored under ambient conditions (AM 1.5 Ghydrophobic aryl groups to the surrounding environment.
illumination). The PCE of the devices with gTPA quickly

decayed after 500 min. On the other hand, PSCs with gTPA2-
OMe maintained around 90% of their initial performance after CONCLUSIONS

more than 960 minF{gure &). Compared with dopant-free In summary, we synthesized three mexylaminotriazine-
spiro-OMeTAD, gTPA2-OMe shows a higher light soakingubstituted TPA glasses via a one-step process. These three
stability. In addition, the long-term stabilitiFigure & also ~ molecular glass materials showed outstantimfprming

shows that gTPA2-OMe-based PSCs have the best long-terhilities. They were incorporated as the HTM in MAPbDI
stability among all others. The unencapsulated devices w&@Cs. The PCE of PSCs based on gTPA2-OMe was the
stored in the dark under an air environment%89o relative  highest (12.50%) with an excellent device stability. The
humidity, room temperature) for over 1000 h, with nosynthesized molecular-glass materials exhibit good conductivity
signi cant decrease in their originakciency. We speculate and hole mobility. Our work proves that the molecular-glass
that the increase in eiency is due to the oxidation of materials synthesized with mexylaminotriazine as the core can
molecular glass materials. The detail,o¥,, and FF be successfully applied as HTMs to PSCs. We do believe that
parameters are summarizeigure S7We also summarized the modied molecular-glass materials can completely replace
in Table SZecent data from small molecule compounds usesgpiro-OMeTAD in the future. These works are currently
as the dopant-free HTM for the MARbhsed PSC underway.

Figure 8.(a) Normalized PCE versus time (in min) on nonencapsulated devices after exposure to continuous 1 sun illumination in air with a
humidity range of 40 to 50%. (b) Normalized PCE versus time (in h) of nonencapsulated devices stored in the dark under ambient air with ¢
relative humidity range of 40 to 50%. (c) Water contact angle ofetlemtdmolecular glasses.
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