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Abstract

The plasma density distribution in the magnetosphere surrounding a pulsar is inves-

tigated numerically using an integral of the motion due to Henriksen and Rayburn

(1973). A program was written that allows calculations in which the magnetic dipole

moment is neither aligned nor orthogonal to the axis of rotation, as well as the option

of calculating either magnetic dipole or Deutsch field lines. The density distribution

was investigated in the context of the observed eclipses of the double pulsar binary

system J0737-3039 A/B when the magnetosphere of pulsar B passes through pulsar

A’s line of sight to Earth. The eclipse light curve yields much information on absorp-

tion in the magnetosphere of B, and this provides an impetus for a detailed study of

the plasma density in B’s magnetosphere. In particular, our results are contrasted

with a simple model due to Lyutikov and Thompson (2005).
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1

Introduction

A pulsar is a spinning, highly magnetic neutron star. The dipole moment is not aligned with

the axis of rotation, and radiation is emitted in a beam from the magnetic poles; as a result,

a distant observer sees pulses of radiation if they are within a range of angles defined by the

spread of the beam. The timing of the pulses is highly regular if the pulsar is isolated in space,

but measureable deviations occur if the pulsar is interacting with other bodies. For this reason,

the discovery of pulsars has had far-reaching consequences in astronomy and astrophysics. In

1974 Hulse and Taylor discovered a pulsar in a highly relativistic binary system and were able

to measure the variation in its pulse frequency due to the Doppler shift as the pulsar moves

away and toward the Earth. The same technique has been used to identify extrasolar planets,

and estimate their masses. The most extreme cases, such as the Hulse-Taylor system and the

double pulsar PSR J0737-3039 A/B, can provide precise tests of General Relativity.

This thesis focuses on properties of the magnetosphere surrounding a pulsar, rather than the

gravitational interaction of two pulsars or the extreme physical situation of a pulsar interior.

However, in reality all three are connected and so the magnetosphere has relevance to pulsar

theory in general.

The theory of pulsar magnetospheres is far from complete: the mass and charge density

distributions surrounding a typical pulsar are not well known, nor does there seem to be consen-

sus regarding the electromagnetic fields. The mechanisms of emission have been debated since

their discovery, and models can be seen as more or less probable based on properties of the

magnetosphere.

The plasma distribution is certainly important in understanding the emission of radiation,

but the real motivation for this study is the absorption of radiation in the observed eclipses of

pulsar A by B in the double pulsar PSR J0737-3039 A/B. The intensity of radiation recieved

from A is modulated in time over the ∼30s eclipse, showing largely opaque periods as well as

transparent windows at the first and second harmonics of pulsar B’s spin frequency (see fig.

2.2). This gives a wealth of information about the plasma distribution in B’s magnetosphere;

Lyutikov and Thompson (2005) use a very simple geometrical model of the absorbing material to

explain the light curve, and a primary aim of this thesis is to investigate their best fit parameters

under a different set of assumptions (see sections 2.2 and 6.4).

In section 3, a model of the pulsar magnetosphere at thermal, gravitational and centrifugal

equilibrium is developed following Henriksen and Rayburn (1973), resulting in a relatively simple

integral of the motion which can be used to calculate the density along magnetic field lines. In
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1. INTRODUCTION

section 4, various possibilities in modelling the magnetic field are considered. Section 5 describes

the computational methods used to generate data sets and plots. Finally, in section 6.4 we discuss

our density distributions in the context of the eclipse light curve and the reasonably successful

model due to Lyutikov and Thompson (2005).
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2

PSR J0737-3039

PSR J0737-0309 is the first known double pulsar binary system, and aside from being a labo-

ratory for precise tests of General Relativity it has provided a unique opportunity to study the

absorption of radio frequency radiation from one pulsar in the magnetosphere of the other.

2.1 Basic Parameters

Pulsar B’s radius is taken to be ∼10 km, and its mass is about 1.25 solar masses. It orbits with

A around their center of mass with a semimajor axis of 8.8×108 m a eccentricity 0.088, with

a period of 2.45 hours. A and B’s spin periods are 23 ms and 2.8 s respectively, and both are

visible in the radio spectrum1. B’s dipole moment is estimated as approximately 3.5×1026 J/T.

Figure 2.1: Geometry of the eclipse, with origin at pulsar B and z-axis normal to the orbital plane.

The spin axis ΩB makes an angle θΩ with the z-axis, and the magnetic dipole moment µB makes at

an angle χ to ΩB . (Figure from Lyutikov and Thompson (2005))

2.2 Eclipse Light Curve

The orbit is nearly (but not quite) edge on as viewed from Earth, so that once per orbit pulses

from A pass through B’s magnetosphere with some impact parameter z0. The intensity of

radiation recieved from A is modulated in time over the ∼30s eclipse, showing largely opaque

periods as well as nearly transparent windows at the first and second harmonics of pulsar B’s spin

frequency (see fig. 2.2). These features are explained fairly well by Lyutikov and Thompson

(2005) using a simple geometric model of pulsar B’s magnetosphere as a rigidly rotating oblique

1Breton et al. (2008)
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2. PSR J0737-3039

Figure 2.2: Light intensity curves from three eclipses of J0737-0309 A by B are shown; the bottom

panel is the average of the three. The dotted vertical lines represent the timing of pulses from B.

(McLaughlin et al., 2004)

magnetic dipole, with constant plasma density along those field lines with maximum extension

between some inner and outer radius R− < Rmax < R+, measured at the magnetic equator.

Field lines closing inside or outside this radius are given zero density. These assumptions are

contrary to those of this thesis, as our method gives varying density along field lines. Their

model is successful enough, however, that a detailed study was carried out using our method

with their best fit parameters wherever possible. The implications of our method in the context

of Lyutikov and Thompson (2005) are discussed in section 6.4. They provide best fit values for

the parameters R−, R+, the angles θΩ, φΩ and χ, and the impact parameter z0 (see Fig. 2.1).

Of primary interest to this thesis are R+ and χ, since the computation described in section 5

calculates a density profile but does not go as far as to simulate the eclipse. R+ can be used

to limit the computation to a region comparable to the size of the magnetosphere (i.e. the

half-width of the eclipsing material, which is determined from the duration of the eclipse and

the orbital radius and period to be ∼ 1.5× 107 m). One needs such a limit, as the assumption

of corotation breaks down at the light cylinder. Additionally, under the strict assumption of

corotation the density calculation diverges for field lines approaching the light cylinder, and the

maximum density attained in a calculation depends strongly on the limit R+. Lyutikov and

Thompson’s best fit value for the angle χ between the dipole moment and the rotation axis is

∼ 75◦, and this is taken as a starting point for our investigations.
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3

The Magnetosphere at Equilibrium

The computational tool making this study of the magnetosphere possible is an integral of the

motion due to Henriksen and Rayburn (1973); some key points of the derivation are summarized

here. The notation primarily follows that of Fock (1964), taking the (+ – – –) convention for

the Minkowski metric.

We consider the region surrounding a pulsar isolated from external gravitational influences (in

the context of PSR J0737-3039, we neglect the effect of pulsar A’s gravity on B’s magnetosphere).

The surrounding matter is treated as a single fluid plasma with stress-energy-momentum tensor

(see Fock (1964))

TµνM = (µ∗ + p/c2)uµuν − pgµν . (3.1)

where p is the pressure, µ∗ is the total mass density in the local inertial frame (including the

mass equivalent of the plasma’s compressional potential energy), and uµ is the four velocity.

The metric gµν is taken to be the Schwarzschild metric, with line element

ds2 = gµνdx
µdxν =

(
1− 2GM

rc2

)
c2dt2 − 1

1− 2GM
rc2

dr2 − r2(dθ2 + sin2 θdφ2). (3.2)

Defining

ψ ≡ 1− 2GM

rc2
, (3.3)

the four velocity is

uµ =

(
γ√
ψ

)
dxµ

dt

γ =
1√

1− ṙ2/ψ+r2θ̇2+r2 sin2 θφ̇2

c2ψ

. (3.4)

Under the assumption that the plasma corotates with the pulsar, γ simplifies to

γ =
1√

1− r2 sin2 θΩ2

c2ψ

. (3.5)

This implies a light cylinder radius of Rlc = ψ c
Ω , which is close to the value c

Ω seen throughout

the literature since ψ ≈ (1− 3× 10−5) at this radius.
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3. THE MAGNETOSPHERE AT EQUILIBRIUM

The use of the Schwarzschild metric in describing the geometry around a pulsar is justified

under several assumptions:

• It is a vacuum solution, so is a good approximation only if the total gravitational effect of

the magnetosphere is negligible compared to that of the pulsar. We believe this to be the

case, since the plasma is many orders of magnitude less dense than a neutron star interior.

• It assumes a spherically symmetric mass distribution as the source of gravitation. In reality

the mass distribution is distorted due to centrifugal effects.

• It neglects the effects of the pulsar’s rotation on the geometry, so we require that the

pulsar’s angular momentum J is not too large. A more complex treatment could be

done using the Kerr metric, which reduces to the Schwarzschild metric in the limit that

J
Mc2r

� 1. The angular momentum of a pulsar is difficult to predict since the equation

of state is unknown, and thus the moment of inertia cannot be calculated. As a rough

estimate, we idealize pulsar B as a uniform sphere (radius ∼10 km) with moment of inertia

I = 2
5MBR

2
B to find

J

Mc2r
≈ 2

5

R2
BΩB

c
≈ 3× 10−5RB

r
(3.6)

which in our calculation, is at most 3×10−6. In light of this, the gravitational effects of

pulsar B’s rotation should be negligible; however, it should be noted that the moment of

inertia is unknown by a large factor, and the Kerr geometry will begin to become significant

for faster-spinning pulsars.1

Under these assumptions, we proceed in using the Schwarzchild metric in the corotating

frame with the understanding that the calculation is restricted to the region Rpulsar < r < Rlc.

Rlc is the ”light cylinder” beyond which the assumption of corotation would imply velocities

greater than c. Due to the strong magnetic field, we suppose that charged particles are confined

to magnetic field lines, executing helical motion. Field lines that close a reasonable distance

within the light cylinder may then be capable of supporting an equilibrium density of plasma.

Adding the electromagnetic field tensor to the equation 3.1 gives the total mass-energy-

momentum tensor Tµν . The equations of motion follow from the conservation laws given by

setting the covariant derivative of Tµν equal to zero.

Tµν = TµνM + TµνE

Tµν ;µ = 0 (3.7)

1The double pulsar system may allow a unique opportunity to measure the moment of inertia of pulsar A

(which is faster spinning than B by a factor of over a hundred), from the relativistic effects of spin-orbit coupling;

the implications of this on constraining the neutron star equation of state are described by Morrison et al. (2004).

This effect will not be measureable for pulsar B.
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The quantity µ∗ includes the compressional potential energy of the plasma (divided by c2),

and so is not constant over the course of the motion. This difficulty is solved by Fock (1964) by

introducing the invariant rest frame density ρ via

dρ

ρ
=

dµ∗

µ∗ + p/c2
. (3.8)

Introducing the total internal energy per unit invariant rest mass ε = p/(ρc2) + µ/ρ, Henriksen

and Rayburn (1973) write the equations of motion 3.7 explicitly and take the scalar product of

the spacelike components with the local magnetic field unit vector. In the case that the average

charge separation of the plasma is constant, the result can be integrated along the magnetic

field line to obtain (assuming the electrostatic contribution is small)

ε
√
ψ/γ = constant on a magnetic field line,

ε ∝ 1√
ψ

1√
1−

(
rΩ sin θ
c
√
ψ

)2
(3.9)

Assuming that the equation of state of the plasma takes the form p ∝ ρν for some ν 6= 1, one

can express the invariant rest frame density ρ relative to a reference point s as

ρ

ρs
=

(
ε− 1

εs − 1

) 1
ν−1

. (3.10)

Equation 3.10 is used for the colour scaling on all plots in this report. Under this analysis,

ρ represents the density when the magnetosphere is at equilibrium with respect to thermal,

gravitational, and centrifugal effects. Qualitatively, we see that the density is large when ψ is

small (i.e. close to the star), as well as when γ is large (i.e. radii approaching the light cylinder).

We note that the Schwarzschild radius for pulsar B is 2GMB
c2

≈ 3.7km ≈ 0.37RB, and so we

expect ψ to range from 0.63 at the stellar surface to about (1− 3× 10−5) at the light cylinder.

γ is equal to 1 along the rotation axis (equation 3.5 with θ = 0), γ ≈ (1 + 4.4 × 10−9) at the

equator of the stellar surface (θ = π/2) and γ →∞ as r approaches the light cylinder.

While this integral of the motion is useful in determining the density along a field line

relative to a reference point, in order to build a complete picture of the density distribution in

the magnetosphere one requires an assumption about the density at many reference points.

7



3. THE MAGNETOSPHERE AT EQUILIBRIUM
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4

Magnetic Fields

Given the form of the magnetic field, equation 3.10 can be used to calculate the relative density

along a field line. The choice of a suitable magnetic field in modelling the pulsar exterior

has drastic consequences on any conclusions made regarding the density distribution. In the

context of the calculations of this thesis, the shape of the fieldlines closing within the light

cylinder determines where particles can accumulate. Under the assumption that the plasma

corotates, it only makes sense to calculate within the light cylinder defined by r sin θ ≤ Rlc.

Magnetic fieldlines that close outside the light cylinder are less relevant as they cannot support

a population of particles at equilibrium. The question of which fieldlines close within the light

cylinder is tractable analytically only in the simplest cases, i.e. the axisymmetric case of a

magnetic dipole aligned with the rotation axis.

4.1 Oblique Rotating Dipole

The simplest realistic model of the magnetic fields around a pulsar is a dipole inclined at an

angle χ to the axis of rotation and rotating rigidly with the pulsar. This seems to be a fairly

reasonable approximation at distances that are small compared to the light cylinder radius, but

large compared to the radius of the star; Lyutikov and Thompson (2005) use a simple dipole in

their model, and successfully predict many features of the eclipse light curve of PSR J0737-3039.

This indicates that in the region of interest the actual field is at least approximately dipolar and

rigidly rotating.

4.2 Deutsch Fields

A solution for the electromagnetic fields in all space due to an idealized magnetic star was

provided by Deutsch (1955). The star is idealized as a perfectly conducting, highly magnetized

rotating sphere in vacuum; that is, conductivity is infinite for r < R∗ and zero for r > R∗. In

the limit that the radius of the star is much less than the radius of the light cylinder Rlc (for

pulsar B, RB/Rlc ≈ 7.5× 10−5), the components of the magnetic field outside the star are

Br =
2µ

r3

[
cosα cos θ +

r

Rlc
sinα sin θ sinλ+ sinα sin θ cosλ

]

Bθ =
µ

r3

[
cosα sin θ +

(
r2

R2
lc

− 1

)
sinα cos θ cosλ− r

Rlc
sinα cos θ sinλ

]

Bφ = − µ
r3

[(
r2

R2
lc

− 1

)
sinα sinλ+

r

Rlc
sinα cosλ

]

9



4. MAGNETIC FIELDS

(4.1)

Here the polar angle θ refers to the axis of rotation, α is the angle between the rotation axis

and the effective magnetic dipole moment, and λ = φ± r
Rlc

Ωt (See Higgins (1996)).

The magnetic Deutsch field reduces to a magnetic dipole for Rpulsar � r � Rlc. Considering

that the eclipsing material of pulsar B has a half-width of ∼1.4×107 m 1 and the light cylinder is

about 1.3×108 m, the Deutsch field will begin to give distinct results in the outer magnetosphere.

Figure 4.1: A selection of Deutsch magnetic field lines that close within the light cylinder is

shown at left, where the large circle represents the light cylinder. At right, a selection of open

Deutsch magnetic field lines is shown on a larger scale, where the small circle now represents the

light cylinder. (figures from Henriksen and Higgins (1997))

Deutsch fields have been used in describing the exterior of a pulsar, for example by Henriksen

and Higgins (1997), Quadir et al. (1980) and McDonald and Shearer (2009).

4.3 Plasma Fields

The Deutsch fields are vacuum solutions to Maxwell’s Equations, and thus completely neglect

the electromagnetic fields due to the flow of plasma in the magnetosphere. The plasma fields

could in principle be added to the Deutsch fields by the principle of superposition; the problem

is then to self-consistently solve for the charge and current densities and electromagnetic fields.

This is a daunting task both analytically and computationally, and is beyond the scope of this

paper. See McDonald and Shearer (2009) for a 3D computation that self-consistently finds

equilibrium charge distributions using a superposition of Deutsch fields and plasma fields.

1Lyutikov and Thompson (2005)
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5

Numerical Density Calculation

A major analytical difficulty is the loss of symmetry when the angle χ between the dipole moment

and the axis of rotation is nonzero, which seems to be necessary in describing a real pulsar. For

this reason the approach of this thesis is largely numerical, so that the the implications of

equations 3.9 and 3.10 in the case of off-axis magnetic dipoles, as well as the more complicated

Deutsch fields (see section 4.1), can be understood. A program was written in C++ making

extensive use of the ROOT data analysis framework (root.cern.ch) to calculate the relative

density along field lines in three dimensions.

5.1 Input Parameters

The program has as basic parameters the mass, dipole moment and rotational velocity of the

pulsar, which are fixed as the best estimates for the parameters of pulsar B in section 2.1. Other

parameters include:

• A set of reference points, along with the density at each point. The calculation follows the

magnetic field lines starting from these points, using equations 3.9 and 3.10 to find ρ at

many points in space.

• An initial step length for moving along field lines. In order to make calculations viable

over a large range but still provide enough data points, the effective step length scales as
√
r.

• The exponent ν in our assumption that p ∝ ρν . Since ρ is a monotonic function of ε,

changing ν does not change the locations of the maxima and minima. Rather, it affects

how extreme the density gradients are. See Figure 6.1

• The angle χ between the dipole moment and the rotation axis, as well as the magnitude

of the dipole moment and the rotation angular velocity Ω

• A condition to only output field lines that close within a certain radius, which should be

chosen to be some fraction of the light cylinder radius. One can also output the field lines

not satisfying this condition if desired.

• The choice between using the magnetic dipole or Deutsch fields in the magnetic field

calculation

11
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5. NUMERICAL DENSITY CALCULATION

The reference points should be chosen with the limiting radius in mind, since the field lines

we are interested in are those that close near the limiting radius. Although the program checks

each field line against the limiting condition before outputting it, much computational time can

be saved with some knowledge of where to place the initial points to generate the field lines of

interest. The limiting field lines, both in the case of a magnetic dipole and the Deutsch fields,

are found to be those that are started at points reasonably close to the magnetic axis. Points

started at a large angle to the magnetic axis do not extend far beyond the initial radius; Lyutikov

and Thompson (2005) suggest that in this region, the magnetic field is so strong that charged

particles quickly lose their energy to synchrotron radiation, and are no longer good absorbers.

The field lines of interest, then, are generated by starting points at angles within a narrow range

with respect to the magnetic axis. We choose all initial points at constant radius r = 100 km

and distribute points symmetrically about the magnetic axis, i.e. for each angle in this range,

the azimuthal angle (with respect to the magnetic axis) is varied at increments from 0 to 2π.

This symmetrical placement of inital points is necessary in order to see the symmetries in the

resulting field lines and density distribution.

The greatest difficulty here is in assigning a density to the initial points, or even their density

relative to each other. The initial points are relatively close together in space, but may be in

a region where the density changes rapidly. A related issue is that the integral of the motion

3.9 holds along a single field line, and it is likely that the constant of integration varies between

different field lines. Varying this constant between fieldlines seems to have a similar effect to

varying the initial densities; for simplicity, the initial points have been given equal density in all

plots shown and the constant of integration is fixed at 1.

5.2 Output

The program outputs the x, y and z components and the relative density ρ/ρs of each step along

every field line that satisfied the limiting condition, i.e. closed within a maximum radius Rmax <

Rlc. Due to the huge amount of data in a detailed calculation, a second program was written

utilizing the 3D plotting facilities in ROOT. The density is plotted on a colour scale, with blue

representing the minimum density in the calculation, green intermediary and red representing

the maximum density in the calculation. Since we lack an absolute scale due to issues mentioned

above, the intended interpretation is that the colours are not directly comparable between two

different calculations, or even between two field lines within one computation. However, we

make note of the maximum and minimum density relative to the initial points (i.e. the values

corresponding to red and blue) for each calculation, and state these values relative to the initial

points having relative density 1.

In all plots shown, lengths are in meters ×106.
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6

Results and Discussion

6.1 Dependence on ν

Without knowledge of the equation of state of the plasma, we must choose a value of ν in the

relation p ∝ ρν . Three choices of ν between 1 and 2, and the corresponding density distributions

are shown in Figure 6.1.

Figure 6.1: The axisymmetric case is shown for three values of ν: ν = 1.2 in the left panel reaches

a maximum density of 425 and a minimum density of 5×10−7; ν = 1.5 in the center frame reaches a

maximum 11 and a minimum of 3×10−3; ν = 1.8 at right reaches a maximum of 4.54 and a minimum

of 2.7×10−2.

It is evident from equation 3.10 that ν affects the gradient of ρ, but not the locations of

maxima and minima. This is seen in Figure 6.1 in the axisymmetric case, and is true in cases

with no symmetry as well. The value of ν is fixed at 1.8 all of the following plots.

6.2 Magnetic Dipole vs. Deutsch fields

A major aim of this study was to determine under what conditions the Deutsch fields yield

results distinct from the dipole approximation.

Figure 6.2 compares the dipole field (left) to the Deutsch field (right) in the axisymmetric

case, for field lines that close within 1.5×107m ≈ 0.11Rlc. At this radius the fields are virtually

identical. In the axisymmetric case, it is difficult to see how the Deutsch fields could differ

greatly from a dipole unless the limiting radius R+ is increased almost to the light cylinder,

since the maximum extension of the fieldlines is perpendicular to the axis of rotation. However,

if the angle χ is increased then the magnetosphere is allowed to extend along the axis of rotation,

and field lines could reach a radius beyond the regime r � Rlc while still ensuring r sin θ is less

than some reasonable fraction of the light cylinder radius.

13



6. RESULTS AND DISCUSSION

Figure 6.2: The axisymmetric case, with the magnetic dipole calculation at left and the calculation

using Deutsch fields at right, for field lines that close within 1.5×107m.

Figure 6.3 shows the dipole field (left) and the Deutsch field in the extreme case in which the

dipole moment is orthogonal to the rotation axis (χ = π/2). Field lines closing within 0.5Rlc

are plotted. The distortion in the dipolar structure of the Deutsch fields can clearly be seen for

fieldlines extending along the z-axis, while the field lines near the rotational equator z = 0 do

not extend as far radially and more or less maintain their dipolar shape. Note that the upper

right panel of figure 6.3 shows the Deutsch magnetosphere to be narrower horizontally than

the dipole fields; this is due to the Deutsch fields beginning to twist at large radii, as seen by

comparing the bottom two panels. The viewing angle in the top right panel does not necessarily

show the Deutsch magnetosphere at its maximum width, as is the case in the top left panel.

6.3 Comparison with McDonald and Shearer (2009)

McDonald and Shearer (2009) use a superposition of Deutsch fields and plasma fields in a 3D

simulation to find stable charge distributions by self-consistently moving charges around until

a stabilty condition is met. It is important to recognize the distinction between this type of

simulation and the one carried out in this thesis: McDonald and Shearer (2009) find distributions

of non-neutral plasma in which the electromagnetic forces are balanced, while our calculation

finds mass distributions when the thermal, gravitational and centrifugal effects are balanced

(under the assumption that the electrostatic effects of the charge separation are negligible). A

full simulation including these effects in a plasma density calculation would be an ambitious,

but potentially worthwhile endeavour.
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6.4 Comparison with Lyutikov and Thompson (2005)

Figure 6.3: The orthogonal case, restricting field lines to one half of the light cylinder radius,

∼6.7×107m. The left figures shows the dipole fields and the right figures shows the Deutsch fields;

the bottom figures are the same calculations rotated by 90◦ so that the dipole moment is out of

the page. Using ν = 1.8, the dipole calculation had a relative maximum and minimum density of

250 and 1×10−4, while the maximum and minimum for the Deutsch field calculation were 245 and

1×10−3 respectively.

6.4 Comparison with Lyutikov and Thompson (2005)

Lyutikov and Thompson model the density in the magnetosphere as being concentrated uni-

formly on a set of field lines with maximum extension within a fairly narrow range R− <

Rmax < R+. The assumption of constant density along field lines is contrary to our approach.

Further, their criterion for the maximum radius is based on estimates of the ”size” of the magne-
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tosphere, and so they measure this radius with respect to the magnetic equator; as a result the

limiting fieldlines, and thus the density distribution, are axially symmetric about the magnetic

axis. Equations 3.9 and 3.10 suggest that the density distribution should be axially symmet-

ric about the rotation axis, at least for initial points satisfying this symmetry; however when

we restrict the calculation to field lines that close within a certain radius we obtain a density

distribution that is not symmetric about either axis. When our calculation is restricted to a

similar maximum radius we find relative densities ranging from 1 at the initial radius r = 100km

down a minimum of about 1×10−4 (blue) before increasing to about 4.5 (red), when the param-

eter ν = 1.8. Lower values of ν have the effect of increasing the maximum and decreasing the

minimum. Given these considerations, we raise two issues with the model due to Lyutikov and

Thompson (2005):

1. Their selection of which field lines to include uses a maximum distance measured along the

magnetic equator, rather than along the equator of rotation. In our model we suppose that

the ability of a field line to support an equilibrium plasma density depends on how closely

it approaches to the light cylinder, and so the shape of the limiting field lines we include

depends on the angle χ. In fitting the angle χ, Lyutikov and Thompson’s magnetosphere

stays the same shape.

2. Their model neglects to consider the equilibrium density along field lines, and assuming

constant density seems to be a gross oversimplification.

As a possible explanation of their results, we note that the high density regions we calculate

seem to lie approximately in a plane, which is not normal to the dipole moment or the axis

of rotation, but is inclined somewhere between. If this was primarily the matter affecting the

eclipse, then under Lyutikov and Thompson’s assumptions the dipole moment is normal to

this plane, which leads to an underestimation of the angle χ. One can then ask if there is

angle χ, in our model, which gives a density distribution concentrated around a plane normal to

Lyutikov and Thompson’s best fit for the parameter χ, in the hopes that our density distribution

can reproduce the eclipse light curve with a different value of χ. Figures 6.7 and 6.8 show

calculations with the Deutsch fields for χ = 80◦ and χ = 85◦ respectively. As χ approaches 90◦

the distribution becomes complicated, but we attempt to draw a line (really a plane extending

into the page) around which the density distribution is roughly centered.

This idea weakly suggests that the angle χ is closer to 90◦ than predicted by Lyutikov and

Thompson (2005), though a detailed study is clearly necessary since our density curves are

drastically different than theirs.
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6.4 Comparison with Lyutikov and Thompson (2005)

Figure 6.4: Using Lyutikov and Thompson’s best fit value χ = 75◦, the magnetic field lines have

been allowed to extend to one half the light cylinder radius at the rotational equator. The dipole

fields (left) and Deutsch fields (right) show significant differences at this radius. The bottom frames

show the same calculations rotated by 90◦. In the dipole calculation the relative density reached

a maximum of 250 and a minimum of 1.4×10−4, and in the Deutsch field calculation it reached a

maximum of 252 and a minimum of 7.7×10−4.
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Figure 6.5: Using the same parameters as in 6.4, but restricting the field lines to those close within

one quarter of the light cylinder radius, as measured at the rotational equator. Significant differences

between the fields are still seen. The bottom frames show the same calculations rotated by 90◦. In

the dipole calculation the relative density reached a maximum of 36 and a minimum of 3.5×10−4,

and in the Deutsch field calculation it reached a maximum of 35.9 and a minimum of 7.7×10−4.
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6.4 Comparison with Lyutikov and Thompson (2005)

Figure 6.6: Once again using the same parameters as in 6.4, we now restrict the field lines to those

close within 1.5×107m ∼ 0.11Rlc, as measured at the rotational equator. The fields appear similar at

this scale. The bottom frames show the same calculations rotated by 90◦. In the dipole calculation

the relative density reached a maximum of 4.61 and a minimum of 9.5×10−4, and in the Deutsch

field calculation it reached a maximum of 4.63 and a minimum of 9.4×10−4.
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Figure 6.7: The Deutsch field lines closing within 1.5×107m are shown for χ = 80◦. A line is drawn

representing a plane about which the density is roughly centered. A perpendicular line represents

the normal to this plane, which Lyutikov and Thompson’s analysis implicitly takes to coincide with

the dipole moment. We find this line to be at an angle of about 68◦, though placement of the line

is very subjective.
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6.4 Comparison with Lyutikov and Thompson (2005)

Figure 6.8: The Deutsch field lines closing within 1.5×107m are shown for χ = 85◦. A line is drawn

representing a plane about which the density is roughly centered, but in this case the distribution is

more complicated and the uncertainty in the slope is even larger. We give a value of about 77◦ for

angle the normal to this plane makes with the rotation axis, though we recognize that the distribution

takes on a new structure as θ approaches 90◦.
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7

Conclusions

Our approach is novel to that in the literature, and gives results inconsistent with the ideas

of Lyutikov and Thompson (2005) in particular. The shape of the absorbing material, as well

as the plasma density distribution within it, is seen to change with the angle χ. The density

along field lines closing within some radius decreases away from the pulsar until the effects of

corotation become significant and the density rises dramatically. It is clear that a full simulation

of the eclipse light curve, along with an independent fitting of parameters, is necessary in order

to fully evaluate our model in the context of the pulsar B. Our results differ drastically from

Lyutikov and Thompson’s, so it is not clear whether or not a best fit to our model would provide

a slight modification of their parameters or a completely different set of parameters.

Within the radius r = 1.5 × 107m which Lyutikov and Thompson associate with the edge

of the magnetosphere, we have seen that the magnetic dipole is a good approximation to the

Deutsch fields. However, the Deutsch fields begin to become important if the magnetosphere

is much bigger than this, particularly if the angle χ is large, since the field lines are allowed to

extend in the z-direction.

We have neglected electrostatic effects, which appear as an additional term in equation

3.9 proportional to the average charge separation of the plasma. In contrast to McDonald and

Shearer (2009), our method says nothing about how charge density is distributed at electrostatic

equilibrium. This is an added complication which merits further study.

While this work does not say very much conclusively, our results encourage further research

along these lines. In particular, the integral of the motion (3.9) gives useful information that

could be used in conjunction with an eclipse light curve analysis.
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