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Movement disorders: Neurodevelopment and neurobehavioural expression
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Summary Braak and co-workers have recently shown that movement dis-

orders such as Parkinson’s disease develop progressively over years with

early neuronal losses in brainstem regions caudal to the substantia nigra.

The relevance of this finding to notions of comorbidity between movement

disorders and psychiatric symptoms was recognised at the recent meeting

concerning, ‘‘Implications of Comorbidity for the Etiology and Treatment

of Neuropsychiatric Disorders’’ held in Oct. 2005 in Mazagon, Spain. The

identification of stages in the early development of neurodegenerative dis-

orders appeared to unify multiple, diverse findings. These included: novel

therapeutic innovations for Parkinson’s disease, Alzheimer’s disease and

depression in the aged; the neurochemical ontogeny of drug-induced oral

dyskinesias; the types of chemical agents abused in neuropsychiatric states;

postnatal iron overload effects upon the functional and interactive role of

dopaminergic and noradrenergic pathways that contribute to the expression

of movement disorders; and the spectrum of motor symptoms expressed in

schizophrenia and attention deficit hyperactivity disorder and the eventual

treatment of these disorders. A continued focus on a number of neuropsy-

chiatric diseases as progressive disorders may lead to further advances in

understanding their etiology and in developing better therapeutics.

Keywords: ADHD, basal ganglia, comorbidity, development, movement

disorder, neurodegeneration, Parkinson’s disease, schizophrenia, staging.

Pathological staging of brain disorders

Aging without a disease complication provides a definition

of ‘‘healthy’’ normal aging. Nevertheless, a high proportion

of aged individuals who do not exhibit symptoms of dis-

ease by leading relatively normal lives show pathological

alterations like those associated with Alzheimer’s disease

(AD), Parkinson’s disease (PD), dementia with Lewy bodies

(DLB), and=or cerebrovascular disease (CVD). According

to the notions introduced by Braak and co-workers (e.g.,

Thal et al., 2004), these alterations are restricted to specific

regions of the brain and may be associated with phases of

premorbidity (or preclinical debut stages) of these neuro-

degenerative diseases. For instance, AD-related alterations

do not routinely accompany normal healthy brain aging

(Arnold et al., 1991; Braak et al., 1996; Hyman et al.,

1984; van Hoesen and Hyman, 1990) but rather these

changes indicate differential stages of neuropathology in

as yet asymptomatic individuals and in patients presenting

with symptoms (Braak and Del Tredici, 2004; Braak et al.,

2000, 2003c). Thus, although aging remains a major risk

factor for the neurodegenerative diseases, it does not neces-

sarily imply age-related diseases; aging is sufficient but not

necessary. Thal et al. (2004) concluded that, even in the

absence of clinical symptoms, early brain pathological dis-

ease-related changes constitute the debut of AD, PD, DLB

and CVD rather than normal constituents of the aging pro-

cess. Against this background, which provides a unique

context for the accummulating evidence of ‘shared symp-

toms’, we will discuss studies pertaining to comorbidity in

neurodegenerative movement disorders.

The study of movement disorders might take as its point-

of-departure the recent Braak et al. (2003a, b) findings

that PD-like brain disorders develop progressively over

years and the loss of neurons in specific brain regions

encompasses both pre-symptomatic and post-symptomatic

phases. Multiple neuronal systems are involved in sporadic

PD with a putative etiology stemming from progressive

changes in a few susceptible types of neurons with essential

a-synuclein-immunopositive Lewy neurites and Lewy
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body components. According to this notion, lesions occur

initially in the motor nuclei of the glossopharyngeal and

vagus nerves as well as anterior olfactory nucleus, from

which more rostral areas become affected gradually, the

disease process advancing in an ascending fashion. The

caudal raphe, gigantocellulear reticular nucleus and locus

coeruleus and sub-coeruleus are next affected, followed by

the substantia nigra compacta. The anteromedial temporal

mesocortex is next afflicted, after which the neocortex, then

the high order sensory association and prefrontal cortical

areas followed by first order sensory association=premotor

areas and primary sensory=motor fields, each step tracing

the course of brain pathology.

From a perspective of neurologic-psychiatric comorbid-

ity, Przuntek et al. (2004) have proposed that the motor

symptoms in PD patients are preceeded by the insidious

onset of mild, psychopathological, i.e., cognitive and per-

ceptual, disturbances expressed by olfactory and visual

dysfunction, with consequent behavioural alteration, e.g.,

reduced stress tolerance. They have described an initial

premotor phase, originating in non-dopaminergic areas,

a conflagration of onset of gastrointestinal brainstem-

associated and sensory deficits leading eventually to the

expression of motor symptoms and further pathological

development. Przuntek et al. (2004) suggest that an un-

known pathogen entering through the gastrointestinal tract

affects brainstem nuclei and initiates the progression of

degeneration that leads to PD, producing multiple comor-

bid symptoms.

Aspects of neuropathological staging and expression

Youdim and co-workers (in press) reviewed the therapeutic

profiles of drug candidates that are designed to express a

diversity of pharmacological properties and multiplicity of

target sites in their actions against the symptoms of neu-

rodegenerative disorders. For example, ladostigil (Sterling

et al., 2002; Weinstock et al., 2000a, b; Youdim and

Buccafusco, 2005) combines a selective monoamine

oxidase-B (MAO-B) inhibition with a cholinesterase inhib-

itory activity to provide a pharmacophore with neuropro-

tective and procholinergic properties as well as an iron

chelator moiety. Ladostigil (TV3326; (N-propargyl-(3R)

aminoindan-5yl)-ethyl) thereby incorporates the pharmaco-

logical actions of rasagiline, rivastigmine and M30, and is

potentially useful for treating the comorbidity underling the

disease states AD, PD and LBD, outlined by, for example,

Braak and Braak (1991).

The incidence of depressive symptoms in AD and PD

patients is of major importance in attempts to understand

comorbid brain pathologies (Leentjens, 2004; McDonald

et al., 2003; Shih et al., 2004; Veazey et al., 2005). An

antidepressant action of ladostigil was observed, using

the forced swim test (Borsini and Meli, 1988) in laboratory

rats and mice (Weinstock et al., 2000b, c). Concurrently, an

anti-Parkinsonian action of the compound as a result of its

MAO-A and MAO-B inhibiting properties was indicated

(Finberg et al., 1996a, b; Gal et al., 2005; Huang et al.,

1999; Wu et al., 2000). The anticholinesterase action of

ladostigil for a therapeutic efficacy in AD enjoys much sup-

port (DeKosky et al., 2002; Francis et al., 1999; Giacobibi,

2004; Racchi et al., 2004; Weinstock et al., 2001), particu-

larly in view of evidence that the compound may block

certain neurodegenerative processes (Francis et al., 2005).

The neuropathological sequence of cytoskeleton changes

relating to neuronal damage and debris in AD is relevant

from the staging perspective (Braak and Braak, 1994, 1999;

Braak et al., 1994). Thus, studies of the early stages of AD

reveal that formation of the intraneuronal cytoskeletal

alterations precedes formation of aggregated amyloid-b
protein (Braak and Braak, 1997). Accordingly, accumula-

tion of abnormally phosphorylated, soluble tau protein

(cf., Palomo et al., 2004), incorporated in projection cells

with initial ‘‘pretangle’’ cytoskeletal changes, is distributed

throughout the cell body and cellular processes (Bancher

et al., 1989), and appears in the trans-entorhinal cortex,

magnocellular nuclei of the basal forebrain and locus coer-

uleus prior to occurence of traces of amyloid-b (Braak and

Del Tredici, 2004; see fig. 1), with deposits of insoluble b-

amyloid proteins developing in parts of the basal temporal

neocortex (Thal et al., 2000). An elevated expression in

generation of b-amyloid proteins may contribute to amy-

loidogenesis processes in AD (Arends et al., 2000; Gouras

et al., 2005; Klyubin et al., 2005). It seems to be the case

that the cholinesterase inhibiting actions of ladostigil and

other anticholinesterases, with or without the MAO-inhibit-

ing component (using the S-isomer, TV3279), exert a vari-

ety of actions that counteract the amyloidal processes in

AD (Pakaski and Kasa, 2003; Yogev-Falach et al., 2002,

2003; Zhang et al., 2004; Zimmerman et al., 2004). Finally,

the neuroprotectant profiles of the N-propargylamine com-

ponent itself, among other aspects showing an anti-apoptic

action (Maruyama et al., 2003, 2004; Weinreb et al., 2004;

Yi et al., 2005), appear relevant (Youdim, 2003; Youdim

and Weinstock, 2002a, b; Youdim et al., 2001a, b; Zheng

et al., 2005). All this serves to impart a particular instru-

mental feature upon ladostigil; on the one hand, it serves as

a substrate for elucidating the complexities of comorbidity,

and on the other, as a template for considering the notion of

staging from a novel perspective.
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Chronic dosing with typical antipsychotic agents, classi-

cally used in the treatment of schizophrenia (e.g., Farde

et al., 1988; Seeman et al., 1975), carries the risk of induc-

ing extrapyramidal side effects (EPS). These compounds,

e.g., haloperidol, are associated with a variety of EPS that

may include dystonia, akathisia, drug-induced Parkinson-

ism and the tardive dyskinesias (TDs), with varying extents

of personal severity (Casey, 1989, 1991, 1994; Deniker,

1983; Lewander, 1994; Youssef and Waddington, 1987;

see also Schmidt and Beninger, in press), whereas admin-

istration of the atypical clozapine is associated with TDs in

a subset of patients (Dav�ee, 1994; Kane et al., 1993; Kurz

et al., 1993; Tamminga et al., 1994). TDs constitute the

most serious of the EPS and are characterised by vacous,

purposeless, involuntary movements that include chewing

behaviour, tongue (often circling) protrusions, lip-smack-

ing, and grimacing in a repetitive fashion, and may incor-

porate movement disorders in other body parts (Albin et al.,

1989; DeLong, 1990; Jeste and Caligiuri, 1993; Mink,

1996). In animal studies, the phenomenon of ‘‘vacous

chewing movements’’ (VCMs), whether tardive or acute

(Egan et al., 1996), was associated both with an imbalance

between dopamine D1- and D2-like receptors (Daly and

Waddington, 1993; Koshikawa et al., 1987; Levin et al.,

1989; Rupniak, 1985) and long-term typical neuroleptic

treatment (Waddington et al., 1983, 1989). VCMs have also

been reported following long-term treatment with an atyp-

ical (Kakigi et al., 1995; Lieberman et al., 1991; Yu et al.,

1999) possibly due, in the case of clozapine, to a dopamine

D1-like receptor agonist action (Salmi and Ahlenius, 1996).

Nevertheless, there is evidence to indicate that clozapine is

less likely to cause, and may even ameliorate TD and

remains markedly useful for the treatment of chronically

psychotic patients with TD (De Leon et al., 1991; Kalian

et al., 1993; Lamberti and Bellnier, 1993; Levkovitch et al.,

1995; Littrell and Magill, 1993; Naber et al., 1989; Nair

et al., 1996; Wirshing et al., 1990). This severe sensitivity

to neuroleptic compounds constitutes a major clinical prob-

lem in DLB. An evaluation of severe neuroleptic sensitivity

reactions, blind to diagnosis, confirmed high prevalence in

DLB and identified high frequencies in PD and PD

with dementia. In the light of comorbidity implications as

derived from Braak’s staging notions, these findings must

imply important relationships that affect clinical practice

(Aarsland et al., 2005; Dalack et al., 1998a).

In their focus upon dopamine D1-like receptor influ-

ences, Kostrzewa and co-workers (in press) applied a novel

animal model of TDs by utilizing neonatal 6-hydroxydo-

pamine (6-OHDA) administration, following desipramine

pretreatment, to destroy nigrostriatal dopamine fibres,

thereby causing a denervation-induced sensitivity (Brus

et al., 1994; Kostrzewa, 1995; Kostrzewa and Gong, 1991;

Kostrzrewa and Hamdi, 1991; Kostrzewa et al., 1993).

Several studies were described involving treatment of neo-

natal dopamine-denervated rats with the D1-like receptor

agonist SKF 38393. A very low dose produced VCMs

(Kostrzewa and Gong, 1991). If the depletion of striatal

dopamine was less than 98.5%, there was no induction

of VCMs by SKF 38393 (Gong et al., 1993a). Additional

studies implicated other neurotransmitter systems in this

animal model of the oral dyskinesias (Gong et al., 1993b,

1994; Huang and Kostrzewa, 1994; Huang et al., 1997).

Thus, neonatal 6-OHDA lesions also induced serotonin

receptor supersensitivity. A serotonin receptor antagonist

attenuated VCMs induced by a D1-like dopamine receptor

agonist (Gong and Kostrzewa, 1992; Gong et al., 1992;

Plech et al., 1995). Dopamine denervation-induced super-

sensensitivity may be associated with notions of staging

through the interactive role of serotonergic transmission

modulating expressions of VCMs; thus, VCMs were abol-

ished by neonatal serotonin lesions (Brus et al., 1994).

Kostrzewa et al. (in press) indicated that a marked aspect

of neonatal dopamine denervation is supersensitization of

the dopamine D1 receptors (necessarily Stage 1) but it is

then followed by supersensitization of 5-HT2 receptors.

Substance abuse by schizophrenic patients remains an

important issue (cf. O’Brien et al., 2004); these patients

are at disproportionately high risk (Regier et al., 1990),

commonly abusing the same agents as the general public

(Anthony et al., 1994). The comorbidity of smoking and

nicotine dependence in schizophrenic patients (e.g., Zammit

et al., 2003) is well documented. Thus, (i) nicotine may

play a role in medicating negative symptoms (Aguilar et al.,

2005; Dalack et al., 1998b) although some have suggested

reconsideration of the ‘‘negative-symptom’’ construct in

the cormorbid disease state (Krystal et al., in press), (ii)

schizophrenia incorporates a primary defect in brain nico-

tinic systems modulating cognition and sensory gating

(Adler et al., 1992; Sacco et al., 2004, 2005; Sarter et al.,

2005), and (iii) cigarette-smoking in these patients modu-

lates the expression of TD and other movement disorders.

These represent both neurologic-psychiatric comorbidity

(Decina et al., 1990; Menza et al., 1991; Yassa et al., 1987)

as well as nicotinic-dopaminergic comorbidity (Levin et al.,

1996; Morens et al., 1995; Sandyk, 1993). Cigarette smok-

ing is a behaviour that provides information about schizo-

phrenia that may be applicable in several aspects (Hughes

et al., 1986; Jann et al., 1986; Sandyk and Kay, 1991); e.g.,

it appears that nicotine withdrawal may exacerbate schizo-

phrenic symptoms (Dalack and Meador-Woodruff, 1996;
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but see Dalack et al., 1999). It is worth noting that typical

and atypical neuroleptics affected smoking in schizophre-

nic patients differentially: haloperidol increased whereas

clozapine decreased smoking (McEvoy et al., 1995a, b).

Continued study of the role of nicotine receptors in schizo-

phrenia is warranted.

Riederer’s overview (Mojacar paper) implied that neuro-

chemical dysfunctions in loop systems associated with

motor behaviour, psychomotor behaviour (or, conversely,

retardation) or psychiatric behaviour induce the risk of

vulnerability in the respective unaffected pathway. From

the point of view of staging (Braak et al., 2003a, b) the

early diagnosis of degenertive disorders is essential. In this

regard an increased echogenicity of the substantia nigra,

detected with transcranial ultrasound, has been observed

in PD patients and a small proportion of healthy adults

(Berg et al., 1999, 2001a, b, 2002; Iova et al., 2004). Zecca

et al. (2005) assayed for iron, ferritin, and neuromelanin

content following postmortem scanning of normal subjects’

brains to measure substantia nigra echogenicity. A signifi-

cant positive correlation was found between the echogenic

area of the SN and the concentration of iron, H- and L-

ferritins. Multivariate analysis carried out in relation to iron

content showed a significant negative correlation between

echogenicity and neuromelanin content of the substantia

nigra. In PD, a typical loss of neuromelanin and increase

of iron is observed in this brain area. Certainly, the involve-

ment of iron, ferritins and neuromelanin in substantia

nigra and locus coeruleus neuropathology implicated in

PD is accumulating (Zecca et al., 2004; and see below).

For instance, the two regions share certain similarities, e.g.

both are pigmented because of neuromelanine and both

contain catecholaminergic neurons, and there is neuronal

loss in both in PD, AD and Down’s syndrome. Remarkably,

Zarow et al. (2003), examining a sample comprising cases

of pathologically confirmed AD (n¼ 86), PD (n¼ 19) and

healthy elderly controls (n¼ 13), found that the AD cases

showed neuron loss of the order: locus coeruleus>nucleus

basalis>substantia nigra, and PD cases: locus coeruleus>

substantia nigra>nucleus basalis. Thus, the greatest loss of

neurons in both AD and PD was obtained in the locus

coeruleus. From the point of view of staging, the significant

correlations between neuronal loss in the locus coeruleus

and nucleus basalis (but not SN) in both PD and AD imply

that these two cell body-containing regions may share com-

mon pathogenetic susceptibilities relevant to the neuroge-

netic process.

Mehler-Wex, Riederer and Gerlach (under review) have

discussed recent evidence that a dopamine-related imbal-

ance of basal ganglia neurocircuitries contributes the essen-

tial pathophysiology underlying PD, schizophrenia and

attention deficit hyperactivity disorder (ADHD). The basal

ganglia include the striatum, caudate nucleus, putamen,

medial and lateral segments of the globus pallidus and

the amygdala, with functional connections to the subtha-

lamic nucleus and substantia nigra (Graybiel, 1990). In

disorders involving dysfunctional movement expression,

clusters of striatal neurons (matrisomes) become abnor-

mally active in inappropriate contexts leading to inhibition

of GPi or SNpr neurons that would normally be active to

supress unwanted movements or inactive in the initiation

of motor activation. The inhibition=excitation of GPi or

SNpr neurons may lead to the disinhibition=inhibition of

thalamocortical circuits, the final common pathway (see

fig. 11 in Mehler-Wex et al., 2006). Activity-dependent

dopamine effects may phasically reinforce, inappropriately,

these activity patterns leading to stereotyped behaviours

(Albin, 2006; Mink, 2006). Essentially, Mehler-Wex et al.

(under review) imply that the a critical consequence will be

overactivity of basal ganglia output sites with concomitant

inhibition of thalamo-cortical drive (see above). In schizo-

phrenia, the hyperactive nature of inhibitory dopamine D2

receptor-mediated transmission disinhibits the thalamus

thereby resulting in cortical overstimulation; this may

underlie the end-products of faulty perceptual, attentional

and information processing functions and affective regula-

tion. Related dopaminergic neuropathology may contribute

to symptom expression in ADHD. In this regard, Lee et al.

(2006) reported that high-frequency stimulation of the sub-

thalamic nucleus increased action potential firing there

only during the initial stimulation period and was followed

by a cessation of firing over the remainder of stim-

ulation. Electrical stimulation of the subthalamic nucleus

with 15 pulses elicited stimulus time-locked increases in

striatal dopamine efflux with maximal peak effects occur-

ring at 50 Hz frequency and 300 mA intensity. Extended

subthalamic nucleus stimulation (1000 pulses at 50 Hz;

300 mA) elicited a similar peak increase in striatal dopa-

mine efflux that was followed by a relatively lower steady-

state elevation in extracellular dopamine over the course of

stimulation. In contrast, extended stimulation immediately

adjacent and dorsal to the subthalamic nucleus resulted

in an 11-fold greater increase in dopamine efflux that

remained elevated over the course of the stimulation. These

findings implicate the subthalamic nuclei in dopamine

release that may function in an antiparkinsonian manner

and=or a proschizophrenic manner. Perhaps this account

also identifies stages of neurodysfunction like those identi-

fied by Braak et al. (2003a, b) that may underlie all three of

the disorders mentioned above.
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Archer and Fredriksson (under review) described the

influence of postnatal iron overload upon the interactive

role of dopaminergic and noradrenergic pathways in mice.

These pathways contribute to the expressions of movement

disorder and psychotic behaviours. Excessive iron deposits

in the brain may generate cytotoxic free radical formation

(Ben-Shachar and Youdim, 1990; Ben-Shachar et al., 1991)

and alterations in iron metabolism play an important role

in many neurologic diseases (Evans, 1993; Olanow, 1992;

Strong et al., 1993). Postnatal iron overload at doses of

7.5 mg=kg (administered on days 10–12 post partum) and

above induced a behavioural syndrome consisting of an

initial hypoactivity followed by a later hyperactivity, in

adult mice tested for 60 min. Following postnatal iron

overload, subchronic treatment with the neuroleptic com-

pounds, clozapine and haloperidol, dose-dependently re-

versed the initial hypoactivity and later hyperactivity

induced by the metal. Furthermore, dopamine D2 receptor

supersensitivity (as assessed using the apomorphine-

induced behaviour test) was directly and positively corre-

lated with iron concentrations in the basal ganglia. The

selective denervation of noradrenaline terminals using the

selective noradrenaline neurotoxin, DSP4, followed by ad-

ministration of the selective dopamine neurotoxin, MPTP,

has been employed as an experimental model for ‘acceler-

ated’ PD, reflecting a striatal dopamine and central nora-

drenaline deficiency (Fornai et al., 1997; Marien et al.,

1993; Nishi et al., 1991). Brain noradrenaline denervation,

using the selective noradrenaline neurotoxin, DSP4, prior

to administration of the selective dopamine neurotoxin,

MPTP, exacerbated both the functional (hypokinesia) and

neurochemical (dopamine depletion) effects of the latter

neurotoxin. Treatment with L-Dopa restored motor activity

only in the animals that had not undergone noradrenaline

denervation. Finally, C57=BL6 mice were administered

either postnatal iron (Fe2þ 7.5 mg=kg, on postnatal days

10–12) or vehicle, followed by either DSP4 (50 mg=kg,

s.c., 30 min after injection of zimeldine, 20 mg=kg, s.c.)

or vehicle (saline) at 63 days of age. Postnatal iron admin-

istration exacerbated the bradykinesia induced by MPTP

and virtually abolished all spontaneous motor activity in

noradrenaline-denervated mice that were MPTP-treated.

Suprathreshold doses (20 mg=kg) of L-Dopa invariably

restore motor activity in MPTP mice: nevertheless, post-

natal iron administration reduced markedly the restoration

of motor activity by suprathreshold L-Dopa (20 mg=kg)

following a 60-min habituation to the test chambers.

Pretreatment with DSP4 effectively eliminated the restora-

tive effect of L-Dopa in the MPTP mice. Postnatal iron

administration caused enduring higher levels of total iron

content in all the groups with an increased level in mice

treated with DSP4 followed by MPTP. From a perspective

based on the staging findings of Braak et al. (2003a, b),

these divergent findings confirm the developmental and

predispositional role of postnatal iron overload and prior

denervation of noradrenaline upon dopaminergic functional

expression and indicate a permanent vulnerability both in

the noradrenergic and dopaminergic pathways following

the postnatal infliction of an iron overload.

In conclusion, the findings of Braak and co-workers

showed that diseases such as PD and AD have stages asso-

ciated with progressive neuronal loss from specific brain

regions. In the early stages, affected individuals may be

relatively symptom-free or may show symptoms not pre-

viously associated with the disorder that they eventually

develop. Thus, there is a natural comorbidity of some

symptom clusters associated with different stages of an

illness. This comorbidity has influenced approaches to drug

development as was shown in the work of Youdim and

coworkers (in press). It has been implied by the findings

of interactive effects of different monoamines in models of

TD (Kostrzewa et al., in press) and of complex neuro-

transmitter abnormalities in PD and AD (Archer and

Fredriksson, under review; Mehler-Wex et al., under re-

view). Taken together, results suggest that a continued

focus on a number of neuropsychiatric diseases as progres-

sive disorders may lead to further advances in understand-

ing their etiology and in developing better therapeutics.
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