

Gene-Environment Interplay in Neurogenesis and Neurodegeneration

TOMÁS PALOMO^a, TREVOR ARCHER^b, RICHARD J. BENINGER^c and RICHARD M. KOSTRZEW^{d,*}

^a*Servicio Psiquiátrico, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain;* ^b*Department of Psychology, University of Göteborg, Box 500, SE-40530 Göteborg, and Department of Health and Behavioural Science, University of Kalmar, Kalmar, Sweden;* ^c*Departments of Psychology and Psychiatry, Queen's University, Kingston ON K7L 3N6, Canada;* ^d*Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA. kostrzew@etsu.edu*

(Received 30 September 2004; Revised 19 October 2004; In final form 23 November 2004)

Factors associated with predisposition and vulnerability to neurodegenerative disorders may be described usefully within the context of gene-environment interplay. There are many identified genetic determinants for so-called genetic disorders, and it is possible to duplicate many elements of recognized human neurodegenerative disorders in either knock-in or knock-out mice. However, there are similarly, many identifiable environmental influences on outcomes of the genetic defects; and the course of a progressive neurodegenerative disorder can be greatly modified by environmental elements. Constituent cellular defense mechanisms responsive to the challenge of increased reactive oxygen species represent only one crossroad whereby environment can influence genetic predisposition. In this paper we highlight some of the major neurodegenerative disorders and discuss possible links of gene-environment interplay. The process of adult neurogenesis in brain is also presented as an additional element that influences gene-environment interplay. And the so-called priming processes (i.e., production of receptor supersensitization by repeated drug dosing), is introduced as yet another process that influences how genes and environment ultimately and co-dependently govern behavioral ontogeny and outcome. In studies attributing the influence of genetic alteration on behavioral phenotypy, it is essential to carefully control environmental influences.

Keywords: Neurodevelopment Neurodegeneration; Neurodevelopment; Neurogenesis; Alzheimer disease; Huntington disease; Tau neuropathy; Priming

INTRODUCTION

Most of the neurodegenerative disorders that have received some degree of documentation, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) are characterized by neuronal damaged caused putatively by toxic, abnormal, aggregate-prone proteins or 'clusters'. A recent review by Petrucelli and Dawson (2004) outlines and describes three different aspects of neurodegenerative mechanisms involved in these disorders, as follows: (1) the genetic configuration underlying the abnormal processing and accumulation of misfolded proteins in the neurodegenerative diseases, using PD as a model disorder, (2) an understanding and consideration of the cellular mechanisms for disposal of abnormal proteins, and the effects of toxic protein accumulation on the ubiquitin proteasome system and neuronal survival, and (3) the development and challenges offered by cell culture and animal models leading to rational and effective treatment strategies. In the realm of neurodegeneration, there are known genetically-associated disorders such as ALS/motor neuron disease, HD, early-onset PD, myasthenia gravis, and others. ALS/motor neuron disease can be inherited or acquired by consumption of foods containing a high content of abnormal excitatory amino acids. HD is an autosomal dominant disorder, caused by abnormal expansion in the length of a CAG triplet repeat sequence in a gene on chromosome 4 (i.e., the *huntingtin* gene). Myasthenia gravis can be autosomal and dominantly inherited; or caused by thymus-derived

*Corresponding author. Tel.: 1 423 439-6321; Fax: 1 423 439-8773; E-mail: Kostrzew@etsu.edu

ISSN 1029 8428 print/ ISSN 1476-3524 online. © 2004 FP Graham Publishing Co., www.NeurotoxicityResearch.com

autoimmune production of anti-AChR (acetylcholine receptors). PD is usually idiopathic although there are inheritable types (Graham and Lantos, 2002; see Palomo *et al.*, 2003).

There are also a number of human prion-associated disorders including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), and kuru. CJD and GSS are dominantly inherited disorders; or they, like kuru, can be acquired by infection (Graham and Lantos, 2002). In other circumstances, genetic and mutational alterations appear to have contributed to a range of disorders affecting the brain, including Down's Syndrome, focal cerebral and global ischemia, and ALS (Groner *et al.*, 1985; Epstein *et al.*, 1987; Chan PH *et al.*, 1993; Gurney *et al.*, 1994; Wong *et al.*, 1995; Bruijn *et al.*, 1997; Murakami *et al.*, 1997). An outline of the neurotoxic action underlying neuronal injury and the eventual neuroprotective/neurorestorative propensities of various molecular mechanisms is outlined (Beal *et al.*, 2000).

Neurodevelopmental disorders include attention-deficit hyperactivity disorder (ADHD), perhaps certain motor/dyskinetic aspects of schizopsychotic disorders with Parkinson-like neuroleptic syndromes, perhaps anxiety disorders including obsessive compulsive disorder (OCD), and elements of affective disorders, including mania (see Palomo *et al.*, 2002b). Drug-induced developmental disorders include fetal alcohol syndrome. Treatments in ontogeny with GABA mimetics or NMDA receptor antagonists are known to produce extensive neuronal apoptosis in brain (Olney *et al.*, 2002), and such neuronal loss can carry forward into behaviorally-associated (dysfunctional) disorders (see Palomo *et al.*, 2002a). The role of apoptosis in HD, too, has been addressed extensively (*cf.* Hickey and Chesselet, 2003). It is not unthinkable that many aspects of neurodegenerative disorder originate, on a cellular level, from neurodevelopmental liabilities that occurred under earlier periods of individuals' brain development, for example due to interferences of either a predominantly genetic or environmental (pharmacological) nature to the preprogramming of neuronal death or to direct toxic cell death. Thus, Fredriksson and Archer (2004) treated mouse pups on either postnatal days 10 or 11 with either the NMDA antagonists, dizocilpine (MK-801, 3 x 0.5 mg/kg) or ketamine (50 mg/kg), or ethanol (3 x 2.5 mg/kg). Fluoro-jade staining indicated marked apoptotic neurodegeneration in several brain regions following sacrifice of some of the pups 24 hours later. The functional analyses indicated marked deficits and hyperactivity in spontaneous motor behaviour; the hyperactivity was in all cases

abolished by a low dose of d-amphetamine (0.1 mg/kg). Marked deficits in radial maze learning were obtained, and the deficit induced by MK-801 was abolished by d-amphetamine. In the circular swim, there was no deficit in the acquisition of the task but relocation of the submerged platform induced marked deficits in the MK-801, ketamine and ethanol treated mice. These NMDA-antagonist-induced postnatally mediated effects are discussed in terms of a useful model of ADHD.

Not to be ignored is the potential of a variety of substances, not restricted to substances of abuse, to produce long-lived changes in the brain after only several exposures (Palomo *et al.*, 2002a; 2004). For example, when rats are treated repeatedly, once daily for several consecutive days, with even low doses of the dopamine D₂ receptor agonist quinpirole (in ontogeny, at old age, or at any stage of ontogeny), there are life-long accentuated responses to subsequent quinpirole treatments (Kostrzewska *et al.*, 1993; 2003; 2004; Brus *et al.*, 2003). Such changes represent a neurotoxic outcome, but these changes are not necessarily accompanied by neurodegenerative changes, or even changes in dopamine D₂ receptor binding parameters (Kostrzewska and Brus, 1991). This highlights the potential of perhaps a library of substances that are able to produce life-long exaggerated (or inhibited) responses in later life, following exposures during ontogeny, even exposure *in utero*.

These above examples demonstrate that both genetics and environment are important in the etiology of neurodegenerative disorders, with both genes and environment coordinately interacting in many of the disorders (Graham and Lantos, 2002). In this paper a few examples of some of the links or suspected links between genetics and environment in the etiology of neurodevelopmental or neurodegenerative disorders are presented and discussed.

The flip side of the coin, neurogenesis, was thought until recently to be specifically an ontogenetic aspect of central nervous system development. However, during the last 5-10 years there has been convincing evidence that new neurons are produced in adulthood - not only in lower vertebrates but in mammalian species including man (Eriksson *et al.*, 1998; Gould *et al.*, 2001; Zhao *et al.*, 2003). Moreover, neurogenesis is now considered to be a viable mechanism accounting for the clinical effect of antidepressants and mood stabilizers (Chen *et al.*, 2000; Malberg *et al.*, 2000; Moore *et al.*, 2000; Czeh *et al.*, 2001; Santarelli *et al.*, 2003).

Over the past 20 plus years, although much has been determined on mechanisms attending neurogenesis and neurodegeneration particularly in regards to pro- and

anti-apoptotic factors, there is still much to be learned. In discussing neurogenesis it is reasonable to state that our current understanding of this process in adult mammalian brain is still quite primitive. A caveat is that (drug-) induced neurogenesis will not necessarily overcome the dying of neurons in neurodegenerative disorders. In reality, induced neurogenesis is region-specific, and as such, the outcome is varied. Therefore, new neurons and new axonal growth will not necessarily result in regeneration of the dying neural tracts and restoration of function. In the case of antidepressant-induced or lithium-induced neurogenesis, the end-point is a change in mood. Therefore, there are aspects of neurodegenerative disorders and elements of psychiatric disorders accompanying the theme of neurodegeneration and neurogenesis.

HUNTINGTON'S DISEASE (HD)

Symptoms of HD usually begin in midlife and include motor dysfunction (including ataxia, lack of coordination, chorea and rigidity), cognitive deficits progressing to dementia, and psychiatric disturbances (cf. Ross *et al.*, 1997). The mutation associated with HD occurs nears the *N*-terminus of the large protein, *huntingtin* (*htt*), and expansions beyond a threshold of 36 CAGs induce the disorder (Huntington's Disease Collaborative Research Group, 1993). The normal *htt* protein appears to play a role during embryogenesis as well as in gene regulation and vesicular trafficking in mature cells (Zuccato *et al.*, 2001; 2003). Mice with a CAG repeat expansion in the coding region of HPRT, a 'housekeeping' enzyme not associated with any neurological disease, also develop a progressive neurodegenerative phenotype (Ordway *et al.*, 1997), *i.e.*, expanded polyglutamine tracts appear to have innate neurotoxicity. An expanded polyglutamine confers a toxic 'gain-of-function' on the disease protein, which progressively and selectively disrupts the functioning of vulnerable populations of neurons. Postmortem brains of HD patients indicate substantial atrophy with marked, selective loss of GABAergic, medium spiny, neurons of the caudate and putamen (Vonsattel *et al.*, 1985; Vonsattel and DiFiglia, 1998). Although *htt* is widely expressed in the embryo, adult nervous system, and periphery, neurons of the cerebral cortex and medium spiny neurons are preferentially damaged in HD (Bates *et al.*, 2002; Bates, 2003). The spatiotemporal expression patterns of *htt* and other CAG repeat disease genes do not correspond to the spatiotemporal vulnerability of specific neuronal populations in the diseased brains. Note that the number of repeat units is highly

predictive for the age-of-onset of the disorder (e.g., Andrews *et al.*, 1993; Duyao *et al.*, 1993; Snell *et al.*, 1993; Rubinsztein *et al.*, 1996; Arning *et al.*, 2004). Variation in repeat length provides a molecular basis for the phenomenon of "anticipation" wherein other factors contribute, especially in cases with pathological CAG repeats in the range 35-45 (Kehoe *et al.*, 1999). Selective vulnerability of neuronal populations may be mediated by disrupted functioning of a subset of synapses subsequent to aberrant gene expression and protein regulation.

Cortical degeneration of neurons projecting to the basal ganglia is seen in the deeper layers, *i.e.*, layers 3, 5 and 6. Less affected areas include the globus pallidus, subthalamic nucleus and amygdala. Structural determinations and aggregations of the mutant *htt* protein (cf. Perutz, 1994; Scherzinger *et al.*, 1997; 1999; Yu *et al.*, 2003), as well as brain pathology determination of HD patients and transgenic mice expressing mutant *htt* protein, show the *htt* immunoreactive aggregates in nuclei of neurons throughout the CNS (Davies *et al.*, 1997; Becher *et al.*, 1998; ; Gutekunst *et al.*, 1999). *Htt* inclusions are distributed also throughout the cytoplasm of most neuronal populations, outnumbering nuclear inclusions (Gutekunst *et al.*, 1999). Immunocytochemical studies have suggested that a proteolytic event occurs within exon 2 of full-length mutant *htt* to create an aggregating fragment (Hodgson *et al.*, 1999; Sieradzan *et al.*, 1999; Lunkes *et al.*, 2002). Further, the brains of mice expressing the N171-fragment of *htt* accumulate a predicted protein product and a C-terminally truncated product (Schilling *et al.*, 1999). Although there is a great deal of available research, animal models (e.g., Burright *et al.*, 1995; Schilling *et al.*, 2001b; Wang *et al.*, 2002) of HD appear limited in the extent to which they model the disorder: 'Knock-in' or YAC transgenic mice demonstrate some of the early features of the disorder but the behavioral phenotype is generally of late onset and does not progress to premature death (Lin *et al.*, 2001). The R6/2 and N171-82Q mouse models develop changes in motor performance and die prematurely (Jankowsky *et al.*, 2002). Recently, Schilling *et al.* (2004), using the HD-N171-82Q model, compared the efficacy with which environmental, pharmacological and genetic interventions ameliorated the functional and pathological features. Thus, an enriched environment, as well as treatment with coenzyme Q10 (an energy metabolism enhancer), improved the motor skills of these mice, although longevity was not prolonged. Several other pharmacological treatments, including remacemide (glutamate receptor antagonist), celecoxib (cyclo-oxygenase-2,

COX-2, inhibitor) and chlorpromazine (prion inhibitor) were ineffective (Schilling *et al.*, 2004, see also Van Dellen *et al.*, 2000a and Schilling *et al.*, 2001a). Other genetic and environmental factors contributing to the pathogenesis of HD in the clinic and laboratory setting have been outlined (Van Dellen and Hannan, 2004).

Disrupted neuronal gene expression in HD mice covers both receptor and synaptic signal transduction pathways (Cha *et al.*, 1998; Bibb *et al.*, 2000; Chan EY *et al.*, 2002). The loss of specific receptor expression precedes loss of neurons and onset of clinical symptoms. For example, there is downregulation of cannabinoid CB₁ receptors in the basal ganglia of both HD patients and mouse models (Glass *et al.*, 1993; 2000; 2004; Denovan-Wright and Robertson, 2000; Lastres-Becker *et al.*, 2002a,b). Decreased ionotropic and metabotropic glutamate receptor binding in molecules mediating synaptic and intraneuronal signaling in striatum, cortex and other regions is seen in HD mice (Van Dellen *et al.*, 2000b; Luthi-Carter *et al.*, 2002a,b). This evidence implies extensive inter- and intra-neuronal signaling deficits, with pre- and post-synaptic function disruptions in HD mice. Altered synaptic densities with associated pathological changes in neuronal morphology in postmortem HD patient brains and various lines of transgenic HD mice is observed (Ferrante *et al.*, 1991; Guidetti *et al.*, 2001; Klapstein *et al.*, 2001 Spires *et al.*, 2004). Medium spiny neurons, the cell population in the striatum most affected in HD (but is also highly affected in PD), receives extensive input from the cortex - which supports the notion that the cumulative effects of receptor changes and synaptic dysfunction could mediate chronic neurotoxicity.

Using striatal primary neuronal cultures from HD94 mice (*i.e.*, *htt* exon 1 protein with a 94 polyglutamine repeat, HD94-*htt*), Díaz-Hernández (2004) showed that HD94-*htt* immunocytolocalization was primarily in nuclei and intraneuronal aggregates. Also, there was no change in proteasome proteolytic activity and no change in expression of LMP2 proteasome subunits of the cultured cells, unless IFN- γ was added - indicating that the induction of proteasome activity requires an extracellular mediator. This synergism between an immune modulator (IFN- γ) and the ubiquitin-proteasome system is important in the pathogenesis associated with HD.

Huntington's disease-like 2 (HDL2) is an autosomal dominantly inherited disorder (Margolis *et al.*, 2001) caused by trinucleotide repeat expansions (Holmes *et al.*, 2001), and bears strong resemblance to clinical phenotype, inheritance pattern, and neuropathological features of HD. The genetic mutation associated with

HDL2 has been characterized as a CTG/CAG trinucleotide repeat expansion within the *junctophilin-3* (JPH3) gene on chromosome 16q24.3 (*ibid*). Intranuclear inclusions immunoreactive for expanded polyglutamine repeats are observed in the brains of HDL2 patients (Walker *et al.*, 2002). JPH3, the protein product of the gene associated with HDL2, would seem to modulate calcium regulation in junctional membranes: mice lacking JPH3 show impaired motor coordination (Nishi *et al.*, 2002). Walker *et al.* (2003) have described the clinical features of the disorder to include chorea, dystonia, parkinsonism and cognitive deficits with marked phenotypic variations in the patients. With one exception (patient of Mexican descent), all patients reported are of African ancestry, with no patients of Caucasian ancestry yet found (Bauer *et al.*, 2002). The hereditary HD 'phenocopies' include distinguishing features: dementia, depression, chorea, dystonia, parkinsonism, expanded/normal HDL2 triplets and acanthocytosis (Kambouris *et al.*, 2000; Moore *et al.*, 2001; Richfield *et al.*, 2002).

The potential for neurogenesis through transplantation of embryonic neurons or stem cells offers a promising therapeutic strategy for the neurodegenerative disorders (Svendsen *et al.*, 1997; Freed *et al.*, 2001). The discovery of endogenous stem/progenitor cells in the hippocampus and subependymal layer of the basal ganglia in the adult mammalian brain offers the possibility that these undifferentiated cells may generate neurons for cell replacement in HD; neural stem cells in the rodent brain subependymal layer, adjacent to the caudate nucleus, were found to proliferate and differentiate into neurons (Arvidsson *et al.*, 2002; Parent *et al.*, 2002; Curtis *et al.*, 2003). Recently, Curtis *et al.* (2003) examined postmortem control and HD human brain tissue using the cell cycle marker proliferating cell nuclear antigen (PCNA), the neuronal marker β III-tubulin, and the glial cell marker, glial fibrillary acidic protein (GFAP). They observed a significant increase in cell proliferation in the subependymal layer in HD compared with control brains. The extent of cell proliferation increased with neuropathological severity and increasing CAG repeats in the HD gene, with the HD group. Furthermore, PCNA+ cells were shown to coexpress β III-tubulin or GFAP, an indication of neuronal and glial cell generation in the subependymal layer of the human brain. Taken together, these findings present evidence for increased progenitor cell proliferation and neurogenesis in the HD adult brain (*ibid*, but see also Eriksson *et al.*, 1998 and Luthi-Carter *et al.*, 2000).

Recent evidence indicates that environmental factors may modify the onset and progression of HD, and pos-

sibly other neurodegenerative disorders. Both molecular and cellular mechanisms may mediate the polyglutamine-induced toxic 'gain-of-function' and associated gene-environment interplay in HD (Li JL *et al.*, 2003). The key aspects of the disorder seem to include abnormal protein-protein interactions, selective disruptions of gene expression and 'pathological plasticity' of synapses in specific brain regions (*cf.* Hannan, 2004a). The development of "enviromimetics" may mimic the effects of specific environmental stimuli (*e.g.*, environmental enrichment), thereby instigating therapeutic strategies and deepening the interactive understanding and functional significance of neurogenesis (*cf.* Van Praag *et al.*, 2000; Kempermann *et al.*, 2004; see below). Histological quantifications of enrichment studies (*e.g.*, Van Dellen *et al.*, 2000a) indicate the delay of degenerative loss of cerebral volume in HD mice. Further analyses in R6/1 HD mice and early-onset R6/2 HD mice confirm a robust effect of environmental enrichment (Hockly *et al.*, 2003). Nevertheless, a primary conceptualization of the molecular and cellular mechanisms would appear to present a key step in the eventual development of new therapies for HD (Bates and Hockly, 2003; Hersch, 2003). Certainly, questions pertaining to eventual pharmacological therapeutic measures are particularly pertinent (Hannan, 2004b).

Tau-Associated Neurodegeneration

Neurofibrillary tangles are composed of abnormal aggregates of the cytoskeletal protein, tau (Lee *et al.*, 2001; Stamer *et al.*, 2002). In AD, insoluble neurofibrillary tangles composed of hyperphosphorylated forms (see below) of tau accumulate initially within the entorhinal cortex and CA1 subfield of the hippocampus (Grundke-Iqbali *et al.*, 1986; Braak and Braak, 1991). An aberrant folded conformational change in tau, recognized with antibody MC1, appears to be one of the earliest tau pathological events (Jicha *et al.*, 1997; 1999; Uboga and Price, 2000; Weaver *et al.*, 2000). Thus, a variety of alterations in tau, reducing its binding affinity to microtubules, lead to depolymerization of microtubules that contribute to the neuronal loss seen in AD (Drechsel *et al.*, 1992; Biernat *et al.*, 1993; Bramblett *et al.*, 1993). Among the family of microtubule associated proteins (MAPs) are MAP1A, MAP1B, MAP2 and tau - the latter being preferentially located in axons (Binder *et al.*, 1985) and associated in part with cytoarchitectural structure. In a number of neurodegenerative disorders known as tauopathies, tau becomes hyperphosphorylated and forms aberrant fibrillar polymers that deposit in neurons and glia. As

described by Ferrer (2004) there are several tauopathies: AD, Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), argyrophilic grain disease (AGD), and familial frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) (with tau gene FTDP-17 mutation (Spillantini and Goedert, 1998; Buée *et al.*, 2000; Lee *et al.*, 2001; Ingram and Spillantini, 2002; Togo *et al.*, 2002; Ghetti *et al.*, 2003). In all of these tauopathies there is increased expression of stress-activated kinase, c-jun N-terminal kinase (SAPK/JNK) and kinase p38 in neurons and glia containing hyperphosphorylated tau. Because there is increased expression of phosphorylated SAPK/JNK and p38 in the region of β A4 deposits and in the brain of transgenic mice (Tg2576) with the double APP Swedish mutation, β A4 amyloid is thought to trigger stress kinase activation and tau phosphorylation in the region where there are amyloid deposits.

A recent study by Avila *et al.* (2004) shows through *in vitro* experiments that phosphotau is actually prone to assemble into fibrillar polymers. However, because the tau gene is transcribed into nuclear RNA by alternative splicing, there are a variety of mRNA species which, when transcribed, result in the production of tau isoforms with different numbers of exons. Some isoforms are expressed only in early ontogeny and other isoforms are preferentially expressed (Andreadis *et al.*, 1995; Yoshida and Goedert, 2002). Tau isoforms expressed in peripheral nerves are different from those expressed in brain (Nuñez, 1988; Goedert *et al.*, 1992c).

Caspases, cysteine aspartate proteases critically involved in apoptosis, may be divided into initiator and executioner caspases; the former initiating apoptosis by activating executioner caspases, and the latter acting on downstream effector substrates causes apoptotic progression leading to cell shrinkage, nuclear fragmentation and membrane blebbing (Kerr *et al.*, 1972). Much evidence now indicates that caspases are activated in the AD brain (Rohn *et al.*, 2001; Su *et al.*, 2001), and that components of the neuronal cytoskeleton, including tau, are targeted by caspases following apoptotic stimuli (Fasulo *et al.*, 2000; Gastard *et al.*, 2003; Utsumi *et al.*, 2003). Though the role of tau caspase-cleavage remains unresolved, there is evidence implicating it in tangle pathology (Gamblin *et al.*, 2003). Recently, Rissman *et al.* (2004) tested the hypothesis that caspase-cleavage of tau is an early event in tangle formation in both AD and a transgenic model of the disorder. They found that caspase-cleaved tau catalyzes filament formation, adopts a conformation seen in

early-stage tangles, and may be hyperphosphorylated. Caspase-cleavage of tau colocalizes with amyloid- β (A β) and developing tangles in both transgenic mice and AD brain. In primary cortical neurons, A β -induced caspase activation leads to tau cleavage and generates tangle-like morphology (Rapoport *et al.*, 2002; Rohn *et al.*, 2002; but see also McLaughlin, 1997). The hyperphosphorylation of tau, through promotion of paired helical filament self-assembly, is the prevailing hypothesis in the development of tangle pathology (Alonso *et al.*, 2001). Findings by Rissman *et al.* (2004), however, have demonstrated that Δ Tau may be phosphorylated after caspase-cleavage, implying that the production of Δ tau does not preclude subsequent phosphorylation.

Brain tau isoforms are divided into two domains: the projection domain containing the amino terminal two-thirds of the molecule [subdivided into regions either proline-rich or with a high number of acidic residues]; and the microtubule-binding domain containing the carboxy terminal one-third of the molecule [subdivided into either a true tubulin-binding region or an acidic carboxy terminal region].

Tau assembly and aggregation as a hyperphosphorylated aggregate occurs primarily in a 2-step process. Several kinases are involved in tau hyperphosphorylation. The first step in hyperphosphorylation of tau proceeds via a proline directed protein kinase (PDPK kinase) (e.g., GSK3) or a non-PDPK kinase (NPDPK kinase) (e.g., protein kinase A, PKA). Lithium, an inhibitor of GSK3, and also H89, an inhibitor of PKA, each inhibit formation of phosphorylated tau. In a second step, in the presence of hydroxynonenal (HNE) - a lipid peroxidation product oft found in Alzheimer patients, hyperphosphorylated tau forms aggregates. A 'rescue' pathway, involving dephosphorylation of phosphotau by phosphatase 2A (PP2A), prevents aggregation since dephosphorylated tau does not assemble. When this pathway is inhibited *in vitro* by okadaic acid, there is an increase in phosphorylated tau aggregates (Avila *et al.*, 2004).

Extracellular signal-regulated mitogen-activated protein kinases (MAPK/ERK1 and MAPK/ERK2, p44, p42), stress-activated protein kinases c-jun N-terminal kinase (SAPK/JNK) and p38 kinase phosphorylate tau (Goedert *et al.*, 1997; Lovestone and Reynolds, 1997; Reynolds *et al.*, 1997a,b; 2000; Jenkins *et al.*, 2000; Bueé-Scherrer and Goedert, 2002).

Expression of MAPK/ERK, SAPK/JNK, p38 in AD
The fibrillization of tau protein is a hallmark injury in AD (Kopke *et al.*, 1993; Buee *et al.*, 2000; Garcia-

Sierra *et al.*, 2000; Galvan *et al.*, 2001). In addition to the cAMP-dependent protein kinase pathway (Shaywitz and Greenberg, 1999), the MAPK cascade also activates CREB (Impey *et al.*, 1999; Roberson *et al.*, 1999). The signaling components of the MAPK cascade, including the extracellular regulated protein kinase (ERK), are expressed at high levels in the brain and CNS (Banes *et al.*, 1999; Wolf *et al.*, 1999). MAPK, that play a critical role in intracellular signaling, are activated by phosphorylation in response to external stressors. For example, traumatic brain injury increases significantly phosphorylated-ERK, but not p38 MAPK levels in rat brain (Otani, 2004). Furthermore, there is an ever-increasing consensus that indirect activation of monoamine receptors by antidepressant treatments increase neurotrophic factors that activate the MAPK cascade (Pullarkat *et al.*, 1998; Russo-Neustadt *et al.*, 1999; Thome *et al.*, 2000). These monoamine receptors may influence the MAPK pathway independent of neurotrophic factors, e.g., through the influence of noradrenaline on the phosphorylation of ERK (Zhong and Minneman, 1999; Tolbert *et al.*, 2003).

There is increased expression of MAPK/ERK, SAPK/JNK, p38 and PKA in tau deposits and NFTs (Hensley *et al.*, 1999; Knowles *et al.*, 1999; Perry *et al.*, 1999; Zhu *et al.*, 2000; 2001; 2002; Atzori *et al.*, 2001; Ferrer *et al.*, 2001a,b; Pei *et al.*, 2001) and in AD, PSP, CBD and PiD (Atzori *et al.*, 2001; Ferrer *et al.*, 2001a,b; Hartzler *et al.*, 2002). Phosphorylated protein kinases are associated with tau deposits in AGD (Ferrer *et al.*, 2003). In a transgenic mouse expressing tau protein with three mutations in the tubulin binding region, present in FTDP-17 disorders, lithium reduces formation of filamentous tau aggregates. This, therefore, indicates that GSK3 kinase plays a role not only in tau phosphorylation but also in tau assembly per se (Avila *et al.*, 2004). In reference to preventive treatments of neurodegenerative disorders, GSK3 and H89 represent potential targets for preventing formation of tau aggregates in tauopathies, such as AD.

Neurofibrillary degeneration and related tauopathies, e.g., frontotemporal dementia, correlates directly with dementia (Tomlinson *et al.*, 1970; Tolnay and Probst, 1999). The activity of protein phosphatase (PP)-2A is compromised in the AD brain and may be one cause of the abnormal hyperphosphorylation of tau and the consequent neurofibrillary degeneration. Recently, Li L *et al.* (2004) demonstrated that the uncompetitive NMDA antagonist, memantine, inhibits and reverses the PP-2A inhibition-induced abnormal hyperphosphorylation and accumulation of tau in organotypic cultures of rat

hippocampal slices. These restorative effects of memantine were not detected with either 5,7-dichlorokynurenic acid or D(-)-2-amino-5-phospho-pentanoic acid, NMDA receptor antagonists that are active at the glycine binding site and the glutamate binding site, respectively. Their results indicate: (i) memantine inhibits and reverses PP-2a inhibition-induced abnormal hyperphosphorylation of tau/neurofibrillary degeneration, and (ii) the compound may have applications for treatment of AD and other tauopathies.

ALZHEIMER'S DISEASE

AD is characterized by loss of synapses and the presence of senile plaques and neurofibrillary tangles (NFTs) in brain (Duyckaerts, 2004). NFTs are composed of hyperphosphorylated tau aggregates of paired helical filaments (PHFs) (Duyckaerts, 2004). The main component of senile plaques is amyloid- β (β A or β A4), derived from α - or γ -secretase cleavage of the β A precursor protein (β -APP) protein (Herreman *et al.*, 2000; Zhang *et al.*, 2000). APP transgenic mice are characterized by β A deposition, amyloid plaques and learning deficits (Games *et al.*, 1995; Hsiao *et al.*, 1996; Sturchler-Pierrat *et al.*, 1997; McGowan *et al.*, 2003). Amyloid suppresses the induction of genes critical for memory consolidation in APP + PS1 transgenic mice (Dickey *et al.*, 2004). Thus, the deposition of β A-protein is fundamental to the development of AD, on the basis of genetic evidence (Selkoe, 1996; Helpert *et al.*, 2004; Kowalska, 2004; Reddy *et al.*, 2004). For example, Yamamoto *et al.* (2004) report that a membrane-mimicking environment, generated in the presence of detergents or a ganglioside, is sufficient for induction of amyloid fibril formation from soluble β A-protein. Hereditary variants of the protein, caused by amyloid precursor gene mutations, including Dutch (E693Q), Flemish (E692G) and Arctic (E693G) types, demonstrate mutually different aggregation behaviour in these environments. The Arctic type β A-protein, in contrast to the wild-type and other variant forms, shows a markedly rapid and higher level of amyloid fibril formation in the presence of sodium dodecyl sulphate or GM1 ganglioside, all of which indicates the presence of favourable local environments for β A-protein fibrillogenesis.

There are considered to be five genetic risks for AD: 1) mutations in the APP gene, 2) mutation in *presenilin 1* gene, or 3) in the *presenilin 2* gene (Bertran and Tanzi, 2003), 4) alleles for apolipoprotein (ApoE), and 5) polymorphism of a gene on chromosome 12 encod-

ing α -2 macroglobulin. Recent association studies showed that single nucleotide polymorphisms in the glutathione-S-transferase Ω 1 and glutathione-S-transferase Ω 2 gene regions are associated with age-of-onset in both AD and PD (Li YJ *et al.*, 2003). The presence of insoluble protein aggregates within neurons is a common hallmark of the neurodegenerative disorders (Taylor *et al.*, 2002). These aggregates may represent a common final pathway by compromising the axonal transport through trapping of molecules which are essential for cellular function, such as 'chaperons' and the proteases. The AD-causing mutations in the APP render valuable clues as to disease mechanisms, further implying the relevance of β -protein toxicity in sporadic AD. The highly penetrant mutations of early-onset AD and/or PD implicate either β A or APP, and α -synuclein as a cause of toxicity and loss of neurons. The APOE*E4 as a risk factor for AD brings cholesterol and lipid metabolism into the equation for β A toxicity (LaDu *et al.*, 2000). Glutathione-S-transferase Ω 1 appears involved in the activation of interleukin 1, and glutathione-S-transferase Ω 1 variations may alter the efficiency of interleukin 1 post-translational processing (Laliberte *et al.*, 2003), contributing to inflammatory, neurotoxic hazard.

Human ApoE gene at locus 19q13.2, associated with AD and coronary heart disease, exists in three common isoforms, E2, E3, and E4, which are encoded by a gene (APOE) with three alleles, ϵ 2, ϵ 3, and ϵ 4, with varying frequencies in populations around the globe (Corbo and Scacchi, 1999). Individuals who are carriers of the ϵ 4 allele are known to be at an increased risk for developing late onset AD (Strittmatter *et al.*, 1993; see Kamboh, 2004), although the mechanism remains unknown. ApoE binds β A and it has been suggested that ApoE is involved in the initiation of β A fibril formation (Evans *et al.*, 1995). This function has been demonstrated *in vitro* (Ma *et al.*, 1996), with E4 exhibiting the strongest promotion of fibril formation. The carriership of ϵ 4 is implicated too in the presentation of motor neuron disease where possession of at least one copy is associated with bulbar rather than limb onset (AlChaalabi *et al.*, 1996). ApoE exerts an isoform specific antioxidant role: E2 providing most protection and E4 least protection (Miyata and Smith, 1996), consistent with the observation that there is a markedly later age-of-onset seen among ϵ 2 carriers, as opposed to ϵ 4 carriers (Corder *et al.*, 1993; but see also Schneider *et al.*, 1995). For example Sleegers *et al.* (2004) found a strong familial clustering of various forms of dementia in an isolated Dutch population, of which a high percentage of late-onset AD could be explained by

APOE*4, but 55% of the origin was still unknown (see also Kamboh, 2004). ApoE is associated with the deposition of A β which is more prevalent with $\epsilon 4$ carriers; expression of ApoE is dramatically elevated in response to brain injury and damage (Nicoll *et al.*, 1995).

Age-of-onset, gender and ethnicity appear relevant aspects of the apoE genotype. There is a gender difference in prevalence and age-of-onset for AD: women with the $\epsilon 3\epsilon 4$ genotype show age-of-onset as early as $\epsilon 4\epsilon 4$ homozygotes whereas in men the $\epsilon 3\epsilon 4$ genotype provides the same (late) onset as $\epsilon 3\epsilon 3$ (Payami *et al.*, 1996). Finally, the carriership of $\epsilon 4$ has been implicated also in Pick's disease, corticobasal degeneration and progressive supranuclear palsy (Schneider *et al.*, 1995). The greater the number of $\epsilon 4$ alleles an individual possesses, the younger the age of the individual at disease onset. Age-of-onset of AD tends to occur later among persons with the $\epsilon 2/\epsilon 3$ genotype (Borgaonkar *et al.*, 1993; Corder *et al.*, 1993, 1994). Carriers of the $\epsilon 4$ allele have a higher risk of AD than individuals with the most common genotype, $\epsilon 3\epsilon 3$, and carriers of the $\epsilon 2$ -allele have a lower risk (Ou *et al.*, 1998; Wilson *et al.*, 1994). These tendencies appear in various ethnic groups. In a meta-analysis, it was reported that the apoE $\epsilon 4$ effect is greater among Caucasians than among Japanese older populations (Farrer *et al.*, 1997). In populations aged 80 years or more, the frequency of occurrence of $\epsilon 4$ carriers is lower and that of $\epsilon 2$ is higher, than in younger people (Asada *et al.*, 1996; Gerdes *et al.*, 2000). Tanaka *et al.* (2003) have carried out case-control studies to ascertain gene-environment interactions in disease-susceptibility for AD based on the apolipoprotein E gene in Japan that identify gene and environmental risk factors.

The AD brain is afflicted by extensive oxidative stress, as indexed by protein oxidation, lipid peroxidation, DNA and RNA oxidation, advanced glycation end-products, protein nitration, mitochondrial abnormalities, reactive oxygen species (ROS) formation and other markers (e.g., Markesberry, 1997; Butterfield *et al.*, 2001; Butterfield and Lauderback, 2002). The 42-amino acid form of the A β [A β (1-42)], central to the pathogenesis of AD, is coupled to the extensive oxidative stress that is expressed in the form of A β -associated free radical induced neurodegeneration in the AD brain (Varadarajan *et al.*, 2000). A β -peptide toxicity is mediated by free radical damage to cell membranes (Mark *et al.*, 1997; Bruce-Keller *et al.*, 1998; Reich *et al.*, 2001). Consistent with a free radical process, A β causes lipid peroxidation in brain cell membranes, and this is blocked by free radical antioxidants (Butterfield *et al.*, 1994; Avdulov *et al.*, 1997; Butterfield, 1997;

Koppal *et al.*, 1998; Lauderback *et al.*, 2001; Pocernich and Butterfield, 2003). The oxidative and neurotoxic properties of A β (1-41) seem to be derived from the single methionine residue at position 35 of the 42-mer (Yatin *et al.*, 1999; Butterfield and Kanski, 2002). Thiobarbituric acid reactive substances (TBARS), an index of lipid peroxidation, are increased in the frontal lobe, but not cerebellum of AD patients (Subbarao *et al.*, 1990), as well as being increased in the sensory and occipital cortex (Balazs and Leon, 1994). Reactive aldehydes like 4-hydroxynonenal (HNE), a major product of lipid peroxidation, and 2-propenal (acrolein), due to free radical attack on polyunsaturated fatty acids, are longer lasting than free radicals and may act at sites distant to their formation (Butterfield and Stadtman, 1997; Pocernich and Butterfield, 2003). Free HNE (Markesberry and Lovell, 1998) and protein-bound (Montine *et al.*, 1997; 1998; Sayre *et al.*, 1997) concentrations are elevated in several brain regions and ventricular csf in AD patients, and may relate to APOE allele type (Montine *et al.*, 1999; Tamaoka *et al.*, 2000). Finally, glutathione S-transferase, with a high detoxifying activity against HNE (Bruns *et al.*, 1999), is significantly reduced in the AD brain (Lovell and Markesberry, 1998). Significantly, a vast accumulation of evidence indicates that A β (1-42)-induced lipid peroxidation, with resultant free radical and reactive aldehyde formation, must offer an important factor in the neurodegeneration observed in AD (Butterfield *et al.*, 2002), not least with regard to characteristics of environment (Kanski *et al.*, 2002).

In the context of brain aging and dementia, nitric oxide (NO) and other reactive nitrogen species seem to also play crucial roles in neuromodulation, transmission and plasticity but are involved too in neurodegeneration and inflammation. Acute and chronic inflammation causes elevated NO formation and nitrosative stress. Both NO and its toxic metabolite, peroxynitrite, inhibit the mitochondrial respiratory chain, with resultant cellular energy deficiency and cell death; peroxynitrite susceptibility is dependent upon reduced intracellular glutathione and cellular stress resistance pathways. Neurons have evolved integrated processes, 'longevity assurance' processes, that are composed of "vitagenes" and include members of the HSP system, e.g., HSP70 and HSP32, that detect and control diverse types of stress. HSP32, heme oxygenase-1 (HO-1), induction generates the potent antioxidant, bilirubin, thereby offering neuroprotective potential pertinent to role of the HO-1 gene in age-related oxidative and nitrosative stress. Consistent with the notion of endogenous cellular defense mechanisms (Calabrese *et*

al., 2004), the maintenance/recovery of vitagenes activity may delay the aging process and decrease the occurrence of age-related neurodegenerative disorders.

Cholinergic dysfunction remains a consistent feature of AD (e.g., Coyle *et al.*, 1983). The co-localization of acetylcholinesterase (AChE) with A β deposits in AD brains (Mesulam, 1986; Moran *et al.*, 1993), as well as the capability of AChE to affect the processing of APP (Mori *et al.*, 1995) and aggregation of A β peptides (Inestrosa *et al.*, 1996) offers a link between APP and cholinergic neurotransmission (Blusztajn and Berse, 2000). Transgenic mice expressing the C-terminal fragment of the APP showed increased tissue levels of AChE (Sberna *et al.*, 1998). Double transgenic expressing both mutations of human APP and α -synuclein showed a prominent age-dependent degeneration of cholinergic neurons in the nucleus basalis and caudate-putamen (Masliah *et al.*, 2001). In the APP23 mouse model of cerebral amyloidosis, modest A β plaque-associated cholinergic changes in the aged neocortex were observed, but no loss of cholinergic basal forebrain neurons (Boncristiano *et al.*, 2002). Luth *et al.* (2003) using ultrastructural detection of ChAT-immunostaining in cerebral cortical sections of transgenic mice demonstrated degeneration of ChAT-immunoreactive fibres in the environment of A β plaques and activated glial cells that suggests the involvement of A β and/or inflammation in the specific degeneration of cholinergic synaptic structures (see also Apelt *et al.*, 2002).

One conceivable approach towards treating/preventing AD is through immunization against A β . In APP transgenic mice, A β immunization reduced the A β burden. Also, in AD patients, A β immunization reduced the number of senile plaques and number of tau-immunoreactive neuritis, and reduced expression of SAPK/JNK-P and p38-P, but did not alter the number of NFTs in the cerebral cortex (Nicoll *et al.*, 2003; Ferrer *et al.*, 2004). Pharmacogenomic studies predict that the therapeutic response in AD is genotype-specific and that the expression of genes involved in the regulation of drug metabolism can affect efficacy and safety issues in pharmacotherapy. Constitutive genomics may be determinant for onset of dementia in conjunction with environmental and cardiovascular factors (e.g., Cacabelos *et al.*, 2004). The accumulation of novel approaches to models of AD pathology, pertaining to efficient gene-delivery systems using lentiviral vectors, offers much in bettering our understanding of mechanisms in AD as well as in identifying additional targets for AD treatments (Shaughnessy *et al.*, 2004).

NEUROGENESIS AND THE ROLE OF ANTIDEPRESSANT EFFECTS

Adult neurogenesis in the hippocampus has been documented in birds (Barnea and Nottebohm, 1994), rodents (Altman and Das, 1965; Kuhn *et al.*, 1996) and primates, including humans (Eriksson *et al.*, 1998; Gould *et al.*, 1999; Kornack and Rakic, 1999). The production of new neurons is influenced by a diversity of environmental and behavioural conditions (McEwen, 1994; Cameron and McKay, 1998; Arvidsson *et al.*, 2001; Taupin and Gage, 2002; Brown *et al.*, 2003). The insertion of new neurons can modulate the capability of the adult hippocampal network to handle the storage of new memories or the clearance of old memories (Feng *et al.*, 2001; Shors *et al.*, 2001). Linking neurogenesis to neuronal activity may adapt the adult network both to physiological demands and pathological insults (Parent *et al.*, 1997; Gould *et al.*, 2000, 2001; Temple, 2001; Alvarez-Buylla *et al.*, 2002). Neurogenesis may be modulated by hormones, growth factors, neurotransmitters as well as by environmental factors, and under pathological conditions (Liu J *et al.*, 1998; Aberg *et al.*, 2000; Van Praag *et al.*, 2000, 2002). Furthermore, several interventions that modulate hippocampal neuronal activity levels affect also adult neurogenesis (Cameron *et al.*, 1995; Van Praag *et al.*, 1999; Madsen *et al.*, 2000; Seaberg and Van Der Kooy, 2002). Nevertheless, gene-environment interplay in neurogenesis poses a number of methodological considerations (Cooper-Kuhn and Kuhn, 2002; see also Kandel, 2001). In addition to *in vivo* studies, cells with stem cell properties have been characterized extensively *in vitro* after isolation from different brain regions and at different stages of development (Reynolds and Weiss, 1996; Palmer *et al.*, 1999). These isolated cells have been shown to differentiate into neurons under defined culture conditions and to synapse with each other or with co-cultured neurons (Mistry *et al.*, 2002; Song *et al.*, 2002a, b).

There is obvious environmental influence on our mood in general and in the development and maintenance of mood disorders and other psychiatric illnesses. As stated by Reid (2004) "...plastic brain mechanisms should prove central to contemporary conceptualizations of psychiatric disorder". Drevets *et al.* (1997) localized an area of abnormally reduced activity and ~45% reduced grey matter volume in the prefrontal cortex ventral to the genu of the corpus callosum in both familial unipolar and bipolar depressives. Atrophy was also seen in the left temporal cortex, including hippocampus, of people with recurrent major depression (Sheline *et al.*, 1996; Shah *et al.*, 1998). The observations that pharmacologi-

cal interventions may enhance neurogenesis are particularly interesting, since antidepressant treatments are efficacious (Malberg *et al.*, 2000), in addition to electroconvulsive therapy (e.g., Madsen *et al.*, 2000). The implication of neurogenesis in cognition has prompted attempts to ascertain the role of the cholinergic system on neurogenesis. Cooper-Kuhn *et al.* (2004) have proposed that the cholinergic system plays a survival-promoting role for neuronal progenitors and immature neurons within regions of adult neurogenesis, similar to the effects observed previously during brain development (*cf.* Mirescu *et al.*, 2004).

Stress and the Hippocampus

Stress hormones are associated with damage to hippocampal neurons (Reagan and McEwen, 1997; Sapolsky, 2000). In rats housed in isolation for several weeks, there was a reduction in the number of new neurons in the dentate gyrus and corresponding impairment of spatial learning; while a return to group housing reversed these deficits (Lu *et al.*, 2003). Other forms of stress mirror the effects of isolation housing (Gould *et al.*, 1997; 1998; Tanapat *et al.*, 2001).

In people with post-traumatic stress disorder (PTSD) there is a tendency for a decrease in hippocampal volume (Bremner, 2002), although there is controversy about whether reduced hippocampal volume precedes stress-induced PTSD; or is a consequence of PTSD.

Complicating the debate about genes and environment is the issue of epigenetic inheritance. For example, female rodents with high licking-and-grooming surrogate mothers themselves become high licking-and-grooming mothers with low anxiety offspring regardless of whether their biological mother was low or high licking-and-grooming (Francis *et al.*, 1999; see Gross and Hen, 2004). However, offspring of high licking-and-grooming mothers raised by low licking-and-grooming mothers did not have high anxiety (Anisman *et al.*, 1998; Liu D *et al.*, 2000).

Although antidepressants produce their pharmacological effect after the first dose (*i.e.*, block of serotonin reuptake by selective serotonin reuptake-inhibitors, SSRIs; enhanced serotonin reuptake after tianeptine; selective block of norepinephrine reuptake; block of norepinephrine and serotonin reuptake by tricyclic antidepressants; inhibition of monoamine oxidase [MAO] by MAO-inhibitors), there is ordinarily a delay of at least 10-14 days before the onset of antidepressant action. This time delay indicates that there is probably some reorganization occurring in brain, and this is now thought to be due to increased neurogenesis - an effect seemingly produced by all antidepressants, prominent-

ly in the hippocampus (Malberg *et al.*, 2000; Brody *et al.*, 2001; Czech *et al.*, 2001; Martin-Aparacio *et al.*, 2001; Santarelli *et al.*, 2003). Similarly, lithium increased grey matter volume in the brain of bipolar patients (Moore *et al.*, 2000).

Gene-environment interactions can take several different forms. In boys with a low activity allele of the MAO-A gene, maltreatment was a risk factor for adult anti-social behavior, while maltreatment was not a risk for later anti-social behavior in boys with the high activity allele (Caspi *et al.*, 2002). Also, genetics may indirectly influence environmental situations. For example, a person with a particular genetic make-up may choose a stressful social or work environment known to increase the risk for major depression (Kendler and Karkowski-Shuman, 1997). Kendler *et al.* (2001) estimate that up to 20% of genetic influence over psychiatric outcome could be by *outside-the-skin* mechanisms *vs* the *within-the-skin* route.

CONCLUSIONS

The interplay of genetic inheritance and environmental influence is becoming evermore complex. In many experimental paradigms it seems to be increasingly difficult to separate a genetic influence from an environmental influence on development. Some environmental exposures (*i.e.*, a priming process) produce life-long outcomes with there being virtually no 'biological footprint' (*i.e.*, anatomical or identifiable biochemical change). And the recognition of neurogenesis in adult brain further complicates all of these elements with facets of new learning and memory - to add to the uncertainty of gene-environment interplays. Exacting studies, carefully controlling the above elements, are needed to resolve the many complexities in addressing the most important components that influence neuronal processes leading to (or preventing) neuronal apoptosis and other biological events attending neurodegenerative or psychiatric disorders.

References

- Aberg MA, ND Aberg, H Hedbäcker, J Oscarsson and PS Eriksson (2000) Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. *J. Neurosci.* **20**, 2896-2903.
- al-Chalabi A, ZE Enayat, MC Bakker, PC Sham, DM Ball, CE Shaw, CM Lloyd, JF Powell and PN Leigh (1996) Association of apolipoprotein E ε4 allele with bulbar-onset motor neuron disease. *Lancet* **347**, 159-160.
- Alonso A, T Zaidi, M Novak, I Grundke-Iqbali and K Iqbali (2001) Hyperphosphorylation induces self-assembly of tau into paired helical filaments/straight filaments. *Proc. Natl. Acad. Sci. USA* **98**, 6923-6928.

Altman J and GD Das (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. *J. Comp. Neurol.* **124**, 319-335.

Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. *J. Neurosci.* **22**, 629-634. Review.

Andreadis A, JA Broderick and KS Kosik (1995) Relative exon affinities and suboptimal splice site signals lead to non-equivalence of two cassette exons. *Nucleic Acids Res.* **23**, 3585-3593.

Andrew SE, YP Goldberg, B Kremer, H Telenius, J Theilmann, S Adam, E Starr, F Squitieri, B Lin, MA Kalchman *et al.* (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. *Nat. Genet.* **4**, 398-403.

Anisman H, MD Zaharia, MJ Meaney and Z Merali (1998) Do early life events permanently alter behavioral and hormonal responses to stressors? *Int. J. Dev. Neurosci.* **16**, 149-164.

Apelt J, A Kumar and R Schliebs (2002) Impairment of cholinergic neurotransmission in adult and aged transgenic Tg2576 mouse brain expressing the Swedish mutation of beta-amyloid precursor protein. *Brain Res.* **953**, 17-30.

Arning L, P Jagiello, S Wieczorek, C Saft, J Andrich and JT Epplen (2004) Glutathione S-transferase Ω 1 variation does not influence age at onset of Huntington's disease. *BMC Med. Genet.* **5**, 7-12.

Arvidsson A, Z Kokaia and O Lindvall (2001) N-methyl-D-aspartate receptor-mediated increase of neurogenesis in adult rat dentate gyrus following stroke. *Eur. J. Neurosci.* **14**, 10-18.

Arvidsson A, T Collin, D Kirik, Z Kokaia and O Lindvall (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. *Nat. Med.* **8**, 963-970.

Asada T, T Kariya, T Kinoshita and A Asaka (1996) Apolipoprotein E allele in centenarians. *Neurol.* **46**, 1484-1494.

Atzori C, B Ghetti, R Piva, AN Srinivasan, P Zolo, MB Delisle, SS Mirra and A Migheli (2001) Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis. *J. Neuropathol. Exp. Neurol.* **60**, 1190-1197.

Avdulov NA, SV Chochina, U Igbavboa, O O'Hara, F Schroeder, JP Cleary and WG Wood (1997) Amyloid beta-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. *J. Neurochem.* **68**, 2086-2091.

Avila J, M Pérez, F Lim, A Gómez-Ramos, F Hernández and JJ Lucas (2004) Tau in neurodegenerative diseases: tau phosphorylation and assembly. *Neurotoxicity Res.* **6**, 477-482.

Balazs L and M Leon (1994) Evidence of an oxidative challenge in the Alzheimer's brain. *Neurochem. Res.* **19**, 1131-1137.

Banes A, JA Florian and SW Watts (1999) Mechanisms of 5-hydroxytryptamine (2A) receptor activation of the mitogen-activated protein kinase pathway in vascular smooth muscle. *J. Pharmacol. Exp. Ther.* **291**, 1179-1187.

Barnea A and F Nottebohm (1994) Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. *Proc. Natl. Acad. Sci. USA* **91**, 11217-11221.

Bates GP (2003) Huntington aggregation and toxicity in Huntington's disease. *Lancet* **361**, 1642-1644.

Bates GP, PS Harper and L Jones (2002) *Huntington's Disease, 3rd Ed.* (Oxford University Press: Oxford).

Bates GP and E Hockly (2003) Experimental therapeutics in Huntington's disease: are models useful for therapeutic trials. *Curr. Opin. Neurol.* **16**, 465-470.

Bauer I, M Gencik, F Laccone, H Peters, BH Weber, EH Feder, H Weirich, DJ Morris-Rosendahl *et al.* (2002) Trinucleotide repeat expansions in the junctophilin-3 gene are not found in Caucasian patients with a Huntington's disease-like phenotype. *Ann. Neurol.* **51**, 662.

Beal MF, T Palomo, RM Kostrzewska and T Archer (2000) Neuroprotection and neurorestorative strategies for neuronal injury. *Neurotoxicity Res.* **2**, 251-292.

Becher MW, JA Kotzuk, AH Sharp, SW Davies, GP Bates, DL Price and CA Ross (1998) Intranuclear neuronal inclusions in Huntington's disease and dentorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. *Neurobiol. Dis.* **4**, 387-397.

Bertram L and R Tanzi (2003) Genetics of Alzheimer's disease, In *Neurodegeneration, the Molecular Pathology of Dementia and Movement Disorders* (Dickson D, Ed.) (ISN. Neuropath. Press: Basel), pp 40-46.

Bibb JA, Z Yan, P Svenningsson, GL Snyder, VA Pieribone, A Horiuchi, AC Nairn, A Messer and P Greengard (2000) Severe deficiencies in dopamine signaling in presymptomatic Huntington's disease mice. *Proc. Natl. Acad. Sci. USA* **97**, 6809-6814.

Biernat J, N Gustke, G Drewes, EM Mandelkow and E Mandelkow (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. *Neuron* **11**, 153-163.

Binder LI, A Frankfurter and LI Rehbn (1985) The distribution of tau in the mammalian central nervous system. *J. Cell. Biol.* **101**, 1371-1378.

Blusztajn JK and B Berse (2000) The cholinergic neuronal phenotype in Alzheimer's disease. *Metab. Brain Dis.* **15**, 45-64.

Boncristiano S, ME Calhoun, PH Kelly, M Pfeiper, L Bondolfi, M Stalder, AL Phinney, D Abramowski, C Sturchler-Pierrat, A Enz, B Sommer, M Staufenbiel and M Jucker (2002) Cholinergic changes in the APP23 transgenic mouse model of cerebral amyloidosis. *J. Neurosci.* **22**, 3234-3243.

Borgaonkar DS, LC Schmidt, SE Martin, MD Kanzer, L Edelsohn, J Growdon and LA Farrer (1993) Linkage of late-onset Alzheimer's disease with apolipoprotein E type 4 on chromosome 19. *Lancet* **342**, 625.

Braak H and E Braak (1991) Neuropathological staging of Alzheimer-related changes. *Acta Neuropathol.* **82**, 239-259.

Bramblett GT, M Goedert, R Jakes, SE Merrick, JQ Trojanowski and VM Lee (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. *Neuron* **10**, 1089-1099.

Bremner JD (2002) Neuroimaging studies in post-traumatic stress disorder. *Curr. Psychiatry Rep.* **4**, 254-263.

Brody AL, S Saxena, P Stoessel, LA Gillies, LA Fairbanks, S Alborzian, ME Phelps, SC Huang, HM Wu, ML Ho, MK Ho, SC Au, K Maidment and LR Baxter Jr (2001) Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. *Arch. Gen. Psychiatry* **58**, 631-640.

Brown J, CM Cooper-Kuhn, G Kempermann, H Van Praag, J Winkler, FH Gage and HG Kuhn (2003) Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. *Eur. J. Neurosci.* **17**, 2042-2046.

Bruce-Keller AJ, JG Begley, W Fu, DA Butterfield, DE Bredesen, JB Hutchins, K Hensley and MP Mattson (1998) Bcl1-2 protects isolated plasma, and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide, and amyloid β -peptide. *J. Neurochem.* **70**, 31-39.

Bruijn NI, MW Becher, MK Lee, KL Anderson, NA Jenkins, NG Copeland, SS Sisodia, JD Rothstein, DR Borchelt, DL Price and DW Cleveland (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. *Neuron* **18**, 327-338.

Bruns CM, I Hubatsch, M Ridderstrom, B Mannervik and JA Tanner (1999) Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products. *J. Mol. Biol.* **288**, 427-439.

Brus R, RM Kostrzewska, P Nowak, KW Perry and JP Kostrzewska (2003) Ontogenetic quinpirole treatments fail to prime for D2 agonist-enhancement of locomotor activity in 6-hydroxy-dopamine-lesioned rats. *Neurotoxicity Res.* **5**, 329-338.

Buee L, T Bussiere, V Buee-Scherrer, A Delacourte and PR Hof (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. *Brain Res. Brain Res. Rev.* **33**, 95-130.

Buee-Scherrer V and M Goedert (2002) Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases in intact cells. *FEBS Lett.* **515**, 151-154.

Butterfield DA (1997) Amyloid-associated free radical oxidative stress, and neurotoxicity: implications for Alzheimer's disease. *Chem. Res. Toxicol.* **10**, 495-506.

Butterfield DA and J Kanski (2002) Review: methionine residue 35 is critical for the oxidative stress, and neurotoxic properties of Alzheimer's amyloid β -peptide(1-42). *Peptides* **23**, 1299-1309.

Butterfield DA and CM Lauderback (2002) Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential curses and consequences involving amyloid β -peptide-associated free radical oxidative stress. *Free Radic. Biol. Med.* **32**, 1050-1060.

Butterfield DA and ER Stadtman (1997) Protein oxidation processes in aging brain. *Adv. Cell Aging Gerontol.* **2**, 161-191.

Butterfield DA, K Hensley, M Harris, M Mattson and J Carney (1994) Beta-amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer's disease. *Biochem. Biophys. Res. Commun.* **200**, 710-715.

Butterfield DA, J Drake, C Pocernich and A Castegna (2001) Evidence of oxidative damage in Alzheimer's disease brain: central role of amyloid beta-peptide. *Trends Mol. Med.* **7**, 548-554.

Butterfield DA, A Castegna, CM Lauderback and J Drake (2002) Evidence that amyloid beta-peptide-induced peroxidation and its sequelae in Alzheimer's disease contribute to neuronal death. *Neurobiol. Aging* **23**, 655-664.

Cacabelos R, NL Fernandez, L Corzo, V Pichel, V Lombardi and Y Kubota (2004) Genomics and phenotypic profiles in dementia: implications for pharmacological treatment. *Meth. Find. Exp. Clin. Pharmacol.* **26**, 421-444.

Calabrese V, D Boyd-Kimball, G Scapagnini and DA Butterfield (2004) Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. *In Vivo* **18**, 245-267.

Cameron HA and R McKay (1998) Stem cells and neurogenesis in the adult brain. *Curr. Opin. Neurobiol.* **8**, 677-680.

Cameron HA, BS McEwen and E Gould (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. *J. Neurosci.* **15**, 4687-4692.

Caspi A, J McClay, TE Moffitt, J Mill, J Martin, IW Craig, A Taylor and R Poulton (2002) Role of genotype in the cycle of violence in maltreated children. *Science* **297**, 851-854.

Cha JH, CM Kosinski, JA Kerner, SA Alsdorf, L Mangiarini, SW Davies, JB Penney, GP Bates and AB Young (1998) Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene. *Proc. Natl. Acad. Sci. USA* **95**, 6480-6485.

Chan EY, R Luthi-Carter, A Strand, AM Solano, SA Hansson, MM DeJohn, C Kooperberg, KO Chase, M DiFiglia, AB Young, BR Leavitt, JH Cha, N Aronin, MR Hayden and JM Olson (2002) Increased *huntingtin* protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease. *Hum. Mol. Genet.* **11**, 1939-1951.

Chan PH, H Kinouchi, CJ Epstein, E Carlson, SF Chen, S Imaizumi and GY Yang (1993) Role of superoxide dismutase in ischemic brain injury: reduction of edema and infarction in transgenic mice following focal cerebral ischemia. *Prog. Brain Res.* **96**, 97-104.

Chen G, G Rajkowska, F Du, N Seraji-Bozorgzad and HK Manji (2000) Enhancement of hippocampal neurogenesis by lithium. *J. Neurochem.* **75**, 1729-1734.

Cooper-Kuhn CM and HG Kuhn (2002) Is it all DNA repair? Methodological conditions for detecting neurogenesis in the adult brain. *Brain Res. Dev. Brain Res.* **134**, 13-21.

Cooper-Kuhn CM, J Winkler and HG Kuhn (2004) Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. *J. Neurosci. Res.* **77**, 155-165.

Corbo RM and R Scacchi (1999) Apolipoprotein E (ApoE) allele distribution in the world. Is APOE*4 a 'thrifty' allele? *Ann. Hum. Genet.* **63**, 301-310.

Corder EH, AM Saunders, WJ Strittmayer, DE Schmechel, PC Gaskell, GW Small, AD Roses, JL Haines and MA Pericak-Vance (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. *Science* **261**, 921-923.

Corder EH, AM Saunders, NJ Risch, WJ Strittmatter, DE Schmechel, PC Gaskell Jr, JB Rimmier, PA Locke, PM Conneally, KE Schmader *et al.* (1994) Protective effects of apolipoprotein type 2 for late onset Alzheimer disease. *Nat. Genet.* **7**, 180-184.

Coyle JT, DL Price and MR DeLong (1983) Alzheimer's disease: a disorder of cortical cholinergic innervation. *Science* **219**, 1184-1190.

Curtis MA, EB Penney, AG Pearson, WMC van Roon-Mom, NJ Butterworth, M Dragunow, B Connor and RLM Faull (2003) Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. *Proc. Natl. Acad. Sci. USA* **100**, 9023-9027.

Czeh B, T Michaelis, T Watanabe, J Frahm, G de Biurrun, M van Kampen, A Bartolomucci and E Fuchs (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine [comment]. *Proc. Natl. Acad. Sci. USA* **98**, 12796-12801.

Davies SW, M Turmaine, BA Cozens, M DiFiglia, M Sharp, CA Ross, E Scheriner, EE Wanker, L Mangiarini and GP Bates (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. *Cell* **90**, 537-548.

Denovan-Wright EM and HA Robertson (2000) Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington's disease mice. *Neuroscience* **98**, 705-713.

Díaz-Hernández M, E Martín-Aparicio, J Avila, F Hernández and JJ Lucas (2004) Enhanced induction of the immunoproteasome by interferon gamma in neurons expressing mutant huntingtin. *Neurotoxicity Res.* **6**, 463-468.

Dickey CA, MN Gordon, JE Mason, NJ Wilson, DM Diamond, JF Guzowski and D Morgan (2004) Amyloid suppresses induction of genes critical for memory consolidation in APP + PS1 transgenic mice. *J. Neurochem.* **88**, 434-442.

Drechsel DN, AA Hyman, MH Cobb and MW Kirschner (1992) Modulation of the dynamic instability of tubulin assembly by the

microtubule-associated protein *tau*. *Mol. Biol. Cell* **3**, 1141-1154.

Drevets WC, JL Price, JR Simpson *et al.* (1997) Subgenual pre-frontal cortex abnormalities in mood disorders. *Nature* **386**, 824-827.

Duyckaerts C (2004) Looking for the link between plaques and tangles. *Neurobiol. Aging* **25**(6), 735-9; discussion 743-746. Review.

Epstein CJ, KB Avraham, M Lovett, S Smith, O Elroy-Stein, G Rotman, C Bry and Y Groner (1987) Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. *Proc. Natl. Acad. Sci. USA* **84**, 8044-8048.

Eriksson PS, E Perfilieva, T Bjork-Eriksson, A Alborn, C Nordborg, DA Peterson and FH Gage (1998) Neurogenesis in the adult human hippocampus. *Nat. Med.* **4**, 1313-1317.

Evans KC, EP Berger, CG Cho, KH Weisgraber and PT Lansbury (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer's disease. *Proc. Natl. Acad. Sci. USA* **92**, 763-767.

Farrer LA, LA Cupples, JL Haines, B Hyman, WA Kukull, R Mayeux, RH Myers, MA Pericak-Vance, N Risch and CM Van Duijn (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. *JAMA* **278**, 1349-1356.

Fasulo L, G Ugolini, M Visintin, A Bradbury, C Brancolini, V Verzillo, M Novak and A Cattaneo (2000) The neuronal microtubule-associated tau is a substrate for caspase-3 and effector of apoptosis. *J. Neurochem.* **75**, 624-633.

Feng R, C Rampon, YP Tang, D Shrom, J Jin, M Kyin, B Sopher, MW Miller, CB Ware, GM Martin, SH Kim, RB Langdon, SS Sisodia and JZ Tsien (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. *Neuron* **32**, 911-926.

Ferrante RJ, NW Kowall and EP Richardson (1991) Proliferative and degenerative changes in striatal spiny neurons in Huntington's disease: a combined study using section-Golgi method and calbindin D28k immunocytochemistry. *J. Neurosci.* **11**, 3877-3887.

Ferrer I (2004) Stress kinases involved in tau phosphorylation in Alzheimer's disease, tauopathies and APP transgenic mice. *Neurotoxicity Res.* **6**, 469-476.

Ferrer I, R Blanco, M Carmona and B Puig (2001a) Phosphorylated mitogen-activated protein kinase (MAPK/ERK-P), protein kinase of 38 kDa (p38-P), stress-activated protein kinase (SAPK/JNK-P), and calcium/calmodulin-dependent kinase II (CaM kinase II) are differentially expressed in tau deposits in neurons and glial cells in tauopathies. *J. Neural Transm.* **108**, 1397-1415.

Ferrer I, R Blanco, M Carmona, R Ribera, E Goutan, B Puig, MJ Rey, A Cardozo, F Vinals and T Ribalta (2001b) Phosphorylated MAP kinase (ERK1, ERK2) expression is associated with early tau deposition in neurons and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. *Brain Pathol.* **11**, 144-158.

Ferrer I, M Barrachina, M Tolnay, MJ Rey, N Vidal, M Carmona, R Blanco and B Puig (2003) Phosphorylated protein kinases associated with neuronal and glial tau deposits in argyrophilic grain disease. *Brain Pathol.* **13**, 62-78.

Ferrer I, M Boada-Rovira, ML Sanchez-Guerra, MJ Rey and F Costa-Jussa (2004) Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer's disease. *Brain Pathol.* **14**, 11-20.

Francis D, J Diorio, D Liu and MJ Meaney (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. *Science* **286**, 1155-1158.

Fredriksson A and T Archer (2004) Neurobehavioural deficits associated with apoptotic neurodegeneration and vulnerability for ADHD. *Neurotoxicity Res.* **6**, 435-456.

Freed CR, PE Greene, RE Breeze, WY Tsai, W DuMouchel, R Kao, S Dillon, H Winfield, S Culver, JQ Trojanowski, D Eidelberg and S Fahn (2001) *N. Engl. J. Med.* **344**, 710-719.

Galvan M, JP David, A Delacourte, J Luna and R Mena (2001) Sequence of neurofibrillary changes in aging and Alzheimer's disease: a confocal study with phosphor-tau antibody, AD2. *J. Alzheimers Dis.* **3**, 417-425.

Gamblin TC, F Chen, A Zambrano, A Abraha, S Lagalwar, AL Guillozet, M Lu, Y Fu, F Garcia-Sierra, N LaPointe, R Miller, RW Berry, LI Binder and VL Cryns (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. *Proc. Natl. Acad. Sci. USA* **100**, 10032-10037.

Games D, D Adams, R Alessandrini, R Barbour, P Berthelette, C Blackwell, T Carr, J Clemens, T Donaldson and F Gillespie (1995) Alzheimer-type neuropathology in transgenic mice over-expressing V717F beta-amyloid precursor protein. *Nature* **349**, 704-706.

Garcia-Sierra F, JJ Hauw, C Duyckaerts, CM Wischik, J Luna-Munoz and R Mena (2000) The extent of neurofibrillary pathology in perforant pathway neurons is the key determinant of dementia in the very old. *Acta Neuropathol.* **100**, 29-35.

Gastard MC, JC Troncoso and VE Koliatsos (2003) Caspase activation in the limbic cortex of patients with early Alzheimer's disease. *Ann. Neurol.* **54**, 393-398.

Gerdes LU, B Jeune, KA Ranberg, H Nybo and JW Vaupel (2000) Estimation of apolipoprotein e genotype-specific relative mortality risks from the distribution of genotypes in centenarians and middle-aged men: apolipoprotein e gene is a "frailty gene", not a "longevity gene". *Genet. Epidemiol.* **19**, 202-210.

Ghetti B, ML Hutton and ZK Wszolek (2003) Frontotemporal dementia and parkinsonism linked to chromosome 17 associated with tau gene mutations (FTDP-17T), In: *Neurodegeneration, The Molecular Pathology of Dementia and Movement Disorders* (Dickson D, Ed.) (ISN. Neuropath. Press: Basel), pp 86-102.

Glass M, RLM Faull and M Dragunow (1993) Loss of cannabinoid receptors in the substantia nigra in Huntington's disease. *Neuroscience* **56**, 523-527.

Glass M, M Dragunow and RLM Faull (2000) The pattern of neurodegeneration in Huntington's disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington's disease. *Neuroscience* **97**, 505-519.

Glass M, A Van Dellen, C Blakemore, AJ Hannan and RLM Faull (2004) Delayed onset of Huntington's disease in mice in an enriched environment correlates with delayed loss of cannabinoid CB₁ receptors. *Neuroscience* **124**, 207-212.

Goedert M, MG Spillantini and RA Crowther (1992) Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system. *Proc. Natl. Acad. Sci. USA* **89**, 1983-1987.

Goedert M, M Hasegawa, R Jakes, S Lawler, A Cuenda and P

Cohen (1997) Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. *FEBS Lett.* **409**, 57-62.

Gould E, BS McEwen, P Tanapat, LAM Galea and E Fuchs (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. *J. Neurosci.* **17**, 2492-2498.

Gould E, P Tanapat, BS McEwen, G Flugge and E Fuchs (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. *Proc. Natl. Acad. Sci. USA* **95**, 3168-3171.

Gould E, AJ Reeves, M Fallah, P Tanapat, CG Gross and E Fuchs (1999) Hippocampal neurogenesis in adult Old World primates. *Proc. Natl. Acad. Sci. USA* **96**, 5263-5267.

Gould E, P Tanapat, T Rydel and N Hastings (2000) Regulation of hippocampal neurogenesis in adulthood. *Biol. Psychiatry* **48**, 715-720.

Gould E, N Vail, M Wagers and CG Gross (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. *Proc. Natl. Acad. Sci. USA* **98**, 10910-10917.

Graham DI and PL Lantos (2002) *Greenfield's Neuropathology*, 7th Ed., (Arnold, Hodder Headline Group: London, UK).

Groner Y, J Lieman-Hurwitz, N Dafni, L Sherman, D Levanon, Y Bernstein, E Danciger and O Elroy-Stein (1985) Molecular structure and expression of the gene locus on chromosome 21 encoding the Cu/Zn superoxide dismutase and its relevance to Down Syndrome. *Ann. NY Acad. Sci.* **450**, 133-156.

Gross C and R Hen (2004) Genetic and environmental factors interact to influence anxiety. *Neurotoxicity Res.* **6**, 493-502.

Grundke-Iqbali I, K Iqbal, YC Tung, M Quinlan, I Wisniewski and LI Binder (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. *J. Biol. Chem.* **261**, 6084-6089.

Guidetti P, V Charles, EY Chen, PH Reddy, JH Kordower, WO Whetsell, R Schwarcz and DA Tagle (2001) Early degenerative changes in transgenic mice expressing mutant huntingtin involve dendritic abnormalities but no impairment of mitochondrial energy production. *Exp. Neurol.* **169**, 340-350.

Gurney ME, H Pu, AY Chiu, MC Dal Canto, CY Polchow, DD Alexander, J Caliendo, A Hentati, YW Kwon, HX Deng *et al.* (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. *Science* **264**, 1772-1775.

Gutekunst CA, SH Li, H Yi, JS Mulroy, S Kuemmerle, R Jones, D Rye, RJ Ferrante, SM Hersch and XJ Li (1999) Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. *J. Neurosci.* **19**, 2522-2534.

Hannan AJ (2004a) Molecular mediators, environmental modulators and experience-dependent synaptic dysfunction in Huntington's disease. *Acta Biochem. Pol.* **51**, 415-430.

Hannan AJ (2004b) Huntington's disease: which drugs might help patients? *Drugs* **7**, 351-358.

Hartzler AW, X Zhu, SL Siedlak, RJ Castellani, J Avila, G Perry and MA Smith (2002) The p38 pathway is activated in Pick disease and progressive supranuclear palsy, a mechanistic link between mitogenic pathways, oxidative stress and tau. *Neurobiol. Aging* **23**, 855-859.

Helpert JA, PS Lee, MF Falangola, VV Dyakin, A Bogart, B Ardekani, K Duff, C Branch, T Wiesniewski, MJ de Leon, O Wolf, J O'Shea and RA Nixon (2004) MRI assessment of neuropathology in a transgenic mouse model of Alzheimer's disease. *Magn. Res. Med.* **51**, 794-798.

Hensley K, RA Floyd, NY Zheng, R Nael, KA Robinson, X Nguyen, QN Pye, CA Stewart, J Geddes, WR Markesberry, E Patel, GV Johnson and G Bing (1999) p38 kinase is activated in the Alzheimer's disease brain. *J. Neurochem.* **72**, 2053-2058.

Herremans A, L Serneels, W Annaert, D Collen, I Schoonjans and B De Strooper (2000) Total inactivation of gamma-secretase activity in presenilin-deficient embryonic stem cells. *Nat. Cell. Biol.* **2**, 461-462.

Hersch SM (2003) Huntington's disease: prospects for neuroprotective therapies 10 years after the discovery of causative genetic mutation. *Curr. Opin. Neurol.* **16**, 501-506.

Hickey MA and MF Chesselet (2003) Apoptosis in Huntington's disease. *Prog. Neuropsychopharmacol. Biol. Psychiatr.* **27**, 255-265.

Hockley E, VM Richon, B Woodman, DL Smith, X Zhou, E Ross, K Sathasivam, S Ghazi-Noori, A Mahal, PA Lowden, JS Steffan, JL Marsh, LM Thompson, CM Lewis, PA Marks and GP Bates (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. *Proc. Natl. Acad. Sci. USA* **100**, 2041-2046.

Hodgson JD, N Agopyan, CA Gutekunst, BR Leavitt, F LePaine, R Singaraja, DJ Smith, N Bissada, K McCutcheon, J Nasir, L. Jamot, *et al.* (1999) A YAC mouse model for Huntington's disease with full length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. *Neuron* **23**, 181-192.

Holmes SE, E O'Hearn, A Rosenblatt, C Callahan, HS Hwang, RG Ingersoll-Ashworth, A Fleisher, G Stevanin, A Brice, NT Potter, CA Ross and RL Margolis (2001) A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2. *Nat. Genet.* **29**, 377-378.

Hsiao K, P Chapman, S Nilsen, C Exkman, Y Harigaya, S Younkin, F Yang and G Cole (1996) Correlative memory deficits. Abeta elevation, and amyloid plaques in transgenic mice. *Science* **274**, 99-102.

Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. *Cell* **72**, 971-983.

Impey S, K Obreitman and DR Storm (1999) Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. *Neuron* **23**, 11-14.

Inestrosa NC, A Alvarez, CA Perez, RD Moreno, M Vicente, C Linker, OI Casanueva, C Soto and J Garrido (1996) Acetylcholinesterase accelerates assembly of amyloid- β peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. *Neuron* **16**, 881-891.

Ingram EM and MG Spillantini (2002) Tau gene mutations, dissecting the pathogenesis of FTDP-17. *Trends Mol. Med.* **8**, 556-562.

Jankowsky JL, A Savonenko, G Schilling, J Wang, G Xu and DR Borchelt (2002) Transgenic mouse models of neurodegenerative disease: opportunities for therapeutic development. *Curr. Neurol. Neurosci. Rep.* **2**, 457-464.

Jenkins SM, M Zinnerman, C Garner and GV Johnson (2000) Modulation of tau phosphorylation and intracellular localization by cellular stress. *Biochem. J.* **345** part 2, 263-270.

Jicha GA, R Bowser, IG Kazam and P Davies (1997) Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. *J. Neurosci. Res.* **48**, 128-132.

Jicha GA, B Berenfeld and P Davies (1999) Sequence requirements for formation of conformational variants of tau similar to those found in Alzheimer's disease. *J. Neurosci. Res.* **55**, 713-723.

Kambh MI (2004) Molecular genetics of late-onset Alzheimer's disease. *Ann. Hum. Genet.* **68**, 381-404.

Kambouris M, S Bohlega, A Al Tahan and BF Meyer (2000) Localization of the gene for a novel autosomal recessive neurodegenerative Huntington-like disorder to 4p15.3. *Am. J. Hum. Genet.* **66**(2), 445-452.

Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. *Science* **294**, 1030-1038.

Kanski J, M Aksanova and DA Butterfield (2002) The hydrophobic environment of Met35 of Alzheimer's A β (1-42) is important for the neurotoxic and oxidative properties of the peptide. *Neurotoxicity Res.* **4**, 219-223.

Kehoe P, M Krawczak, PS Harper, MJ Owen and AL Jones (1999) Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. *J. Med. Genet.* **36**, 108-111.

Kempermann G, L Wiskott and FH Gage (2004) Functional significance of adult neurogenesis. *Curr. Opin. Neurobiol.* **14**, 186-191.

Kendler KS (2001) Twin studies of psychiatric illness: an update. *Arch. Gen. Psychiatry* **58**, 1005-1014.

Kendler KS and Karkowski-Shuman (1997) Stressful life events and genetic liability to major depression: genetic control of exposure to the environment? *Psychol. Med.* **27**, 539-547.

Kerr JF, AH Wyllie and AR Currie (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. *Br. J. Cancer* **26**, 239-257.

Klapstein GJ, RS Fisher, H Zanjani, C Cepeda, ES Jokel, MF Chesselet and MS Levine (2001) Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington's disease transgenic mice. *J. Neurophysiol.* **86**, 2667-2677.

Knowles RB, J Chin, CT Ruff and BT Hyman (1999) Demonstration by fluorescence resonance energy transfer of a close association between activated MAP kinase and neurofibrillary tangles, implications for MAP kinase activation in Alzheimer's disease. *J. Neuropathol. Exp. Neurol.* **58**, 1090-1098.

Kopke E, YC Tung, S Shaikh, AC Alonso, K Iqbal and I Grundke-Iqbal (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-helical filament pool in Alzheimer disease. *J. Biol. Chem.* **268**, 24374-24384.

Koppal T, R Subramanian, J Drake, MR Prasad, H Dillon and DA Butterfield (1998) Vitamin E protects against amyloid peptide (25-35)-induced changes in neocortical synaptosomal membrane lipid structure and composition. *Brain Res.* **786**, 270-273.

Kornack DR and P Rakic (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. *Proc. Natl. Acad. Sci. USA* **96**, 5768-5773.

Kostrzewska RM and R Brus (1991) Ontogenetic homologous supersensitization of quinpirole-induced yawning in rats. *Pharmacol. Biochem. Behav.* **39**, 517-519.

Kostrzewska RM, R Brus, M Rykaczewska and A Plech (1993) Low dose quinpirole ontogenically sensitizes to quinpirole-induced yawning in rats. *Pharmacol. Biochem. Behav.* **44**, 484-489.

Kostrzewska RM, JP Kostrzewska and R Brus (2003) Dopamine receptor supersensitivity: an outcome and index of neurotoxicity. *Neurotoxicity Res.* **5**, 111-118.

Kostrzewska RM, JP Kostrzewska, P Nowak, RA Kostrzewska and R Brus (2004) Dopamine D₂ agonist priming in intact and dopamine-lesioned rats. *Neurotoxicity Res.* **6**, 457-462.

Kowalska A (2004) Genetic basis of neurodegeneration in familial Alzheimer's disease. *Pol. J. Pharmacol.* **56**, 171-178.

Kuhn HG, H Dickinson-Anson and FH Gage (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. *J. Neurosci.* **16**, 2027-2033.

LaDu MJ, JA Shah, CA Reardon, GS Getz, G Bu, J Hu, L Guo and LJ van Eldik (2000) Apolipoprotein E receptors mediate the effects of beta-amyloid on astrocyte cultures. *J. Biol. Chem.* **43**, 33974-33980.

Laliberte RE, DG Perregaux, LR Hoth, PJ Rosner, CK Jordan, KM Peese, JF Eggler, MA Dombroski, KF Geoghegan and CA Gabel (2003) Glutathione S-transferase omega 1-1 is a target for cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. *J. Biol. Chem.* **278**, 16567-16578.

Lastres-Becker I, F Berrendero, JJ Lucas, E Martin-Aparicio, A Yamamoto, JA Ramos and JJ Fernandez-Ruiz (2002a) Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB₁ receptors in the basal ganglia of a transgenic model of Huntington's disease. *Brain Res.* **929**, 236-242.

Lastres-Becker I, M Gomez, R De Miguel, JA Ramos and J Fernandez-Ruiz (2002b) Loss of cannabinoid CB(1) receptors in the basal ganglia in the late akinetic phase of rats with experimental Huntington's disease. *Neurotoxicity Res.* **4**, 601-608.

Lauderback CM, JM Hackett, F Huang, JM Keller, L Szweda, WR Markesberry and DA Butterfield (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer's disease brain: the role of A β (1-42). *J. Neurochem.* **78**, 413-416.

Lee VM, M Goedert and JQ Trojanowski (2001) Neurodegenerative tauopathies. *Ann. Rev. Neurosci.* **24**, 1121-1159.

Li JL, MR Hayden, EW Almqvist, RR Brinkman, A Durr, C Dode, PJ Morrison, O Suchowersky, CA Ross *et al.* (2003) A genome scan for modifiers of age at onset in Huntington's disease: the HD MAPS study. *Am. J. Hum. Genet.* **73**, 682-687.

Li L, A Sengupta, N Haque, I Grundke-Iqbal and K Iqbal (2004) Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration. *FEBS Lett.* **566**, 261-269.

Li YJ, SA Oliveira, P Xu, ER Martin, JE Stenger, CR Scherzer, MA Hauser, WK Scott, GW Small, MA Nance *et al.* (2003) Glutathione S-transferase omega 1 modifies age-at-onset of Alzheimer disease and Parkinson disease. *Hum. Mol. Genet.* **24**, 3259-3267.

Lin CH, S Tallaksen-Greene, WM Chien, JA Cearley, WS Jackson, AB Crouse, S Ren, XJ Li, RL Albin and PJ Detloff (2001) Neurological abnormalities in a knock-in mouse model of Huntington's disease. *Hum. Mol. Genet.* **10**, 137-144.

Liu D, J Diorio, JC Day, DD Francis and MJ Meaney (2000) Maternal care, hippocampal synaptogenesis and cognitive development in rats. *Nat. Neurosci.* **3**, 799-806.

Liu J, K Solway, RO Messing and FR Sharp (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. *J. Neurosci.* **18**, 7768-7778.

Lovell MA and WR Markesberry (1998) Decreased glutathione transferase in brain and ventricular fluid in Alzheimer's disease. *Neurology* **51**, 1562-1566.

Lovestone S and CH Reynolds (1997) The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. *Neuroscience* **78**, 309-324.

Lu L, G Bao, H Chen, P Xia, X Fan, J Zhang, G Pei and L Ma (2003) Modification of hippocampal neurogenesis and neuroplasticity by social environments. *Exp. Neurol.* **183**, 600-609.

Lunkes A, KS Lindenberg, L Ben Haim, C Weber, D Devys, GB Landwehrmeyer, JL Mandel and Y Trottier (2002) Proteases acting on mutant Huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. *Mol. Cell* **10**, 259-269.

Luth H-J, J Apelt, AO Ihunwo, T Arendt and R Schliebs (2003)

Degeneration of β -amyloid-associated cholinergic structures in transgenic APP(SW) mice. *Brain Res.* **977**, 16-22.

Luthi-Carter R, A Strand, NL Peters, SM Solano, ZR Hollingsworth, AS Menon, AS Frey, BS Spector, EB Penney, G Schilling *et al.* (2000) *Hum. Mol. Genet.* **9**, 1259-1271.

Luthi-Carter R, AD Strand, SA Hanson, C Kooperberg, G Schilling, AR La Spada, DE Merry, AB Young, CA Ross, DR Borchelt and JM Olson (2002a) Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects. *Hum. Mol. Genet.* **11**, 1927-1937.

Luthi-Carter R, SA Hanson, AD Strand, DA Bergstrom, W Chun, NL Peters, AM Woods, EY Chan, C Kooperberg, D Krainc, AB Young, SJ Tapscott and JM Olson (2002b) Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. *Hum. Mol. Genet.* **11**, 1911-1926.

Ma J, A Yee, HB Brewer, S Das and H Potter (1996) Amyloid-associated proteins $\alpha 1$ -antichymotrypsin and apolipoprotein E assembly of Alzheimer β -protein into filaments. *Nature* **372**, 92-94.

Madsen TM, A Treschow, J Bengzon, TG Bolwig, O Lindvall and A Tingstrom (2000) Increased neurogenesis in a model of electroconvulsive therapy. *Biol. Psychiatry* **47**, 1043-1049.

Malberg JE, AJ Eisch, EJ Nestler and RS Duman (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. *J. Neurosci.* **20**, 9104-9110.

Margolis RL, E O'Hearn, A Rosenblatt, V Willour, SE Holmes, ML Franz, C Callahan, HS Hwang, JC Troncoso and CA Ross (2001) A disorder similar to Huntington's disease is associated with a novel CAG repeat expansion. *Ann. Neurol.* **50**, 373-380.

Mark RJ, Z Pang, JW Geddes, K Uchida and MP Mattson (1997) Amyloid β -peptide impairs glucose transport in hippocampal, and cortical neurons: involvement of membrane lipid peroxidation. *J. Neurosci.* **17**, 1046-1054.

Markesberry WR (1997) Oxidative stress hypothesis in Alzheimer disease. *Free Radic. Biol. Med.* **23**, 134-147.

Markesberry WR and MA Lovell (1998) 4-Hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer's disease. *Neurobiol. Aging* **19**, 33-36.

Martin-Aparicio E, A Yamamoto, F Hernandez, R Hen, J Avila and JJ Lucas (2001) Proteasomal-dependent aggregate reversal and absence of cell death in a conditional mouse model of Huntington's disease. *J. Neurosci.* **21**, 8772-8781.

Masliah E, E Rockenstein, I Vebergs, Y Sagara, M Mallory, M Hashimoto and L Mucke (2001) β -Amyloid peptides enhance α -synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. *Proc. Natl. Acad. Sci. USA* **98**, 12245-12250.

McEwen BS (1994) Corticosteroids and hippocampal plasticity. *Ann. NY Acad. Sci.* **746**, 134-142.

McGowan E, F Pickord and DW Dickson (2003) Alzheimer animal models, models of Abeta deposition in transgenic mice, In *Neurodegeneration, The Molecular Pathology of Dementia and Movement Disorders* (Dickson D, Ed.) (ISN. Neuropath. Press: Basel), pp 74-79.

McLaughlin L, FP Zemlan and GE Dean (1997) Identification of microtubule-associated protein tau isoforms in Alzheimer's paired helical filaments. *Brain Res. Bull.* **43**, 501-508.

Mesulam MM (1986) Alzheimer plaques and cortical cholinergic innervation. *Neuroscience* **17**, 275-276.

Mirescu C, JD Peters and E Gould (2004) Early life experience alters response of adult neurogenesis to stress. *Nat. Neurosci.* **7**, 841-846.

Mistry SK, EW Keefer, BA Cunningham, GM Edelman and KL Crossin (2002) Cultured rat hippocampal neural progenitors generate spontaneously active neural networks. *Proc. Natl. Acad. Sci. USA* **99**, 1621-1626.

Miyata M and JD Smith (1996) Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. *Nat. Genet.* **14**, 55-61.

Montine KS, PS Kim, WR Markesberry and TJ Montine (1997) 4-Hydroxy-2-nonenal pyrrole adducts in human neurodegenerative disease. *J. Neuropathol. Exp. Neurol.* **56**, 866-871.

Montine KS, EE Reich, MD Neely, KR Sidell, SJ Olson, WR Markesberry and TJ Montine (1998) Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. *J. Neuropathol. Exp. Neurol.* **57**, 415-425.

Montine KS, WR Markesberry, W Zackert, ST Sanchez, LJ Roberts and JD Morrow (1999) The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles or with APOE genotype in Alzheimer's disease patients. *Am. J. Pathol.* **155**, 863-868.

Moore GJ, JM Bechuk, IB Wilds, G Chen and HK Manji (2000) Lithium-induced increase in human grey matter. *Lancet* **356**, 1241-1242.

Moore RC, F Xiang, J Monaghan, D Han, Z Zhang, L Edstrom, M Anvret and SB Prusiner (2001) Huntington disease phenocopy is a familial prion disease. *Am. J. Hum. Genet.* **69**, 1385-1388.

Moran MA, EJ Mufson and P Gomez-Ramos (1993) Colocalization of cholinesterases with β -amyloid protein in aged and Alzheimer's brain. *Acta Neuropathol.* **85**, 362-369.

Mori F, C Lai, F Fusi and E Giacconi (1995) Cholinesterase inhibitors increase secretion of APPs in rat brain cortex. *NeuroReport* **6** 633-636.

Murakami K, T Kondo, CJ Epstein and PH Chan (1997) Overexpression of CuZn-superoxide dismutase reduces hippocampal injury after global ischemia in transgenic mice. *Stroke* **28**, 1797-1804.

Nicholl JAR, GW Roberts and DI Graham (1995) Apolipoprotein E e4 allele is associated with deposition of amyloid beta-protein following head injury. *Nat. Med.* **2**, 135-137.

Nicoll JAR, D Wilkinson, C Holmes, O Steart, H Markham and RO Weller (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide, a case report. *Nat. Med.* **9**, 4448-4452.

Nishi M, K Hashimoto, K Kuriyama, S Komazaki, M Kano, S Shibata and H Takeshima (2002) Motor coordination in mutant mice lacking junctophilin type 3. *Biochem. Biophys. Res. Commun.* **292**, 318-324.

Nunez J (1988) Immature and mature variants of MAP2 and tau proteins and neuronal plasticity. *Trends Neurosci.* **11**, 477-479. Review.

Olney JW, DF Wozniak, V Jevtovic-Todorovic, NB Farber, P Bittigau and C Ikonomidou (2002) Glutamate and GABA receptor dysfunction in the fetal alcohol syndrome. *Neurotoxicity Res.* **4**, 315-25.

Ordway JM, S Tallaksen-Greene, CA Gutekunst, EM Bernstein, JA Cearley, HW Weiner, LS Dure, R Lindsey, SM Hersch, RS Jope, RL Albin and PJ Detloff (1997) Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. *Cell* **91**, 753-763.

Otani N (2004) The role of phosphorylated mitogen-activated protein kinase (MAPK) pathways following lateral fluid perfusion injury in the rat brain. *Boei. Ika. Daigakko. Zasshi.* **29**, 15-25.

Ou T, K Yamakawa-Kobayashi, T Arinami, H Amemiya, H Fugiwara, K Kawata, M Saito, S Kikuchi, Y Noguchi, Y Sugishita and H Hamaguchi (1998) Methylenetetrahydrofolate reductase and apolipoprotein E polymorphisms are independent risk factors for coronary heart disease in Japanese: a case control study. *Atherosclerosis* **137**, 23-28.

Palmer TD, EA Markakis, AR Willhoite, F Safar and FH Gage (1999) Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. *J. Neurosci.* **19**, 8487-8497.

Palomo T, T Archer, RJ Beninger and RM Kostrzewska (2002a) Neurodevelopmental liabilities of substance abuse. *Neurotoxicity Res.* **4**, 267-279.

Palomo T, RM Kostrzewska, T Archer and RJ Beninger (2002b) Neurodevelopmental liabilities in schizophrenia and affective disorders. *Neurotoxicity Res.* **4**, 397-408.

Palomo T, RJ Beninger, RM Kostrzewska and T Archer (2003) Brain sites of movement disorder: genetic and environmental agents in neurodevelopmental perturbations. *Neurotoxicity Res.* **5**, 1-26.

Palomo T, RM Kostrzewska, RJ Beninger and T Archer (2004) Gene-environment interplay in alcoholism and other substance abuse disorders: expressions of heritability and factors influencing vulnerability. *Neurotoxicity Res.* **6**, 343-361.

Parent JM, TW Yu, RT Leibowitz, DH Geschwind, RS Sloviter and DH Lowenstein (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult hippocampus. *J. Neurosci.* **17**, 3727-3738.

Parent JM, VV Valentin and DH Lowenstein (2002) Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. *J. Neurosci.* **22**, 3174-3188.

Payami H, S Zareparsi, KR Montee, GJ Sexton, JA Kaye, TD Bird, CE Yu, EM Wijsman, LL Heston, M Litt and GD Schellenberg (1996) Gender difference in apolipoprotein E-associated risk for familial Alzheimer disease: a possible clue to the higher incidence of Alzheimer disease in women. *Am. J. Hum. Genet.* **58**, 803-811.

Pei JJ, E Braak, H Braak, K Grundke-Iqbali, W Winblad and RF Cowburn (2001) Localization of active forms of c-Jun kinase (JNK) and p38 kinase in Alzheimer's disease brains at different stages of neurofibrillary degeneration. *J. Alzheimer's Dis.* **3**, 41-48.

Perry G, H Roder, A Nunomura, A Takeda, AL Friedlich, X Zhu, AL Raina, N Holbrook, SL Siedlak, PLR Harris and MA Smith (1999) Activation of extracellular receptor kinase (ERK) in Alzheimer's disease links oxidative stress to abnormal tau phosphorylation. *NeuroReport* **10**, 2411-2415.

Perutz M (1994) Polar zippers: their role in human disease. *Protein Sci.* **3**, 1629-1637.

Petrucelli L and TM Dawson (2004) Mechanism of neurodegenerative disease: role of ubiquitin proteasome system. *Ann. Med.* **36**, 315-320.

Pocernich CB and A Butterfield (2003) Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer's disease. *Neurotoxicity Res.* **5**, 515-520.

Pullarkat SR, DJ Mysels, M Tan and DS Cown (1998) Coupling of serotonin 5-HT1B receptors to activation of mitogen-activated protein kinase (ERK-2) and p70 S6 kinase signaling systems. *J. Neurochem.* **71**, 1059-1067.

Rapaport M, HN Dawson, LI Binder, MP Vitek and A Ferreira (2002) Tau is essential to beta-amyloid-induced neurotoxicity. *Proc. Natl. Acad. Sci. USA* **99**, 6364-6369.

Reagan LP and BS McEwen (1997) Controversies surrounding glu-

cocorticoid-mediated cell death in the hippocampus. *J. Chem. Neuroanat.* **13**, 149-167.

Reddy PH, H McWeeney, BS Park, M Manczak, RV Gutala, D Partovi, Y Jung, V Yau, R Searles, M Mori and J Quinn (2004) Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. *Hum. Mol. Genet.* **13**(12), 1225-1240. Epub 2004 Apr 28.

Reich EE, WR Markesberry, LJ Roberts, LL Swift, JD Morrow and TJ Montine (2001) Brain regional quantification of F-ring and D-/E-ring isoprostanes in Alzheimer's disease. *Am. J. Pathol.* **158**, 293-297.

Reid IC and CA Stewart (2004) Brain plasticity and antidepressant treatments: new cells, new connections. *Neurotoxicity Res.* **6**, 483-492.

Reynolds BA and S Weiss (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. *Dev. Biol.* **175**, 1-13.

Reynolds CH, AR Nebreda, GM Gibb, MA Utton and BH Anderton (1997a) Reactivating kinase/p38 phosphorylates tau protein *in vitro*. *J. Neurochem.* **69**, 191-198.

Reynolds CH, MA Utton, GM Gibb, A Yates and BH Anderton (1997b) Stress-activated protein kinase/c-Jun N-terminal kinase phosphorylates tau protein. *J. Neurochem.* **68**, 1736-1744.

Reynolds CH, JC Betts, WP Blackstock, AR Nebreda and BH Anderton (2000) Phosphorylation sites on tau identified by nano-electrospray mass spectrometry, differences *in vitro* between the mitogen-activated protein kinases ERK2, c-Jun N-terminal kinase and p38, and glycogen synthase kinase-3beta. *J. Neurochem.* **74**, 1587-1595.

Richfield EK, JP Vonsattel, ME Macdonald, Z Sun, YP Deng and A Reiner (2002) Selective loss of striatal preprotachykinin neurons in a phenocopy of Huntington's disease. *Mov. Disord.* **17**, 327-332.

Rissman RA, WW Poon, M Blurton-Jones, S Oddo, R Torp, FM LaFerla, TT Rohn and CW Cotman (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. *J. Clin. Invest.* **114**, 121-130.

Roberson ED, JD English, JP Adams, JC Selcher, C Kondratick and JD Sweatt (1999) The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 or hippocampus. *J. Neurosci.* **19**, 4337-4348.

Rohn TT, E Head, WH Nesse, WH Cotman and DH Cribbs (2001) Activation of caspase-8 in the Alzheimer's brain. *Neurobiol. Dis.* **8**, 1006-1016.

Rohn TT, RA Rissman, E Head and CW Cotman (2002) Caspase activation in the Alzheimer's disease brain: tortuous and torturous. *Drug News Perspect.* **15**, 549-557.

Ross CA, RL Margolis, A Rosenblatt, NG Ranen, MW Becher and E Aylward (1997) Huntington disease and the related disorder, dentatorubral-pallidoluysian atrophy. *Medicine* **76**, 305-338.

Rubinstein DC, J Leggo, R Coles, E Almqvist, V Biancalana, JJ Cassiman, K Chotai, M Connarty, D Crawford, A Curtis, D Curtis, MJ Davidson *et al.* (1996) Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington's disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. *Am. J. Hum. Genet.* **58**, 16-22.

Russo-Neustadt A, RC Beard and CW Cotman (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. *Neuropsychopharmacology* **21**, 679-682.

Santarelli L, M Saxe, C Gross, A Surget, F Battaglia, S Dulawa, N Weisstaub, J Lee, R Duman, O Arancio, C Belzung and R Hen (2003) Requirement of hippocampal neurogenesis for the behavioural effects of antidepressants. *Science* **301**, 805-809.

Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. *Arch. Gen. Psychiatry* **57**, 925-935.

Sayre LM, DA Zelasko, PL Harris, G Perry, RG Salomon and MA Smith (1997) 4-Hydroxynonenal-derived advanced lipid peroxidation products are increased in Alzheimer's disease. *J. Neurochem.* **68**, 2092-2097.

Sberna G, J Saez-Valero, QX Li, C Czech, K Bayreuther, CL Masters, CA McLean and DA Small (1998) Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-terminal fragment (CT100) of the β -amyloid protein precursor of Alzheimer's disease. *J. Neurochem.* **71**, 723-731.

Scherzinger E, R Lurz, M Turmaine, L Mangiarini, B Hollenbach, R Hasenbank, GP Bates, SW Davies, H Lehrach and EE Wanker (1997) Huntington-encoded polyglutamine expansions form amyloid-like protein aggregates *in vitro* and *in vivo*. *Cell* **90**, 549-558.

Scherzinger E, A Sittler, K Schweiger, V Heiser, R Lurz, R Hasenbank, H Lehrach and EE Wanker (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. *Proc. Natl. Acad. Sci. USA* **96**, 4604-4609.

Schilling G, MW Becher, AH Sharp, HA Jinnah, K Duan, JA Kotzuk, HH Slunt, T Ratovitski, JK Cooper, NA Jenkins, NG Copeland, DL Price, CA Ross and DR Borchelt (1999) Intracellular inclusions and neuritic pathology in transgenic mice expressing a mutant N-terminal fragment of huntingtin. *Hum. Mol. Genet.* **8**, 397-407.

Schilling G, ML Coonfield, CA Ross and DR Borchelt (2001a) Coenzyme Q10 and remacemide hydrochloride ameliorate motor deficits in a Huntington's disease transgenic mouse model. *Neurosci. Lett.* **315**, 149-153.

Schilling G, HA Jinnah, V Gonzales, ML Coonfield, Y Kim, JD Wood, DL Price, XJ Li, N Jenkins, N Copeland, T Moran, CA Ross and DR Borchelt (2001b) Distinct behavioural and neuropathological abnormalities in transgenic mouse models of HD and DRPLA. *Neurobiol. Dis.* **8**, 405-418.

Schilling G, AV Savonenko, ML Coonfield, JL Morton, E Vorovich, A Gale, C Nelson, N Chan, M Eaton, D Fromholt, CA Ross and DR Borchelt (2004) Environmental, pharmacological, and genetic modulation of the HD phenotype in transgenic mice. *Exp. Neurol.* **187**, 137-149.

Schneider JA, M Gearing, RS Robbins, W de l'Aune and SS Mirra (1995) Apolipoprotein E genotype in diverse neurodegenerative disorders. *Ann. Neurol.* **38**, 131-135.

Seaberg RM and D van der Kooy (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. *J. Neurosci.* **22**, 1784-1793.

Selkoe DJ (1996) Amyloid β -protein, and the genetics of Alzheimer's disease. *J. Biol. Chem.* **271**, 18295-18298.

Shah PJ, KP Ebmeier, MF Glabus and G Goodwin (1998) Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression: controlled magnetic resonance imaging study. *Br. J. Psychiatry* **172**, 527-532.

Shaughnessy L, B Chamblin, L McMahon, A Nair, MB Thomas, J Wakefield, F Koentgen and R Ramabhadran (2004) Novel approaches to models of Alzheimer's disease pathology for drug screening and development. *J. Mol. Neurosci.* **24**, 23-32.

Shaywitz A and ME Greenberg (1999) A stimulus-induced transcription factor activated by a diverse array of extracellular signals. *Ann. Rev. Biochem.* **68**, 821-861.

Sheline Y, P Wang, M Gado, JG Csernansky and MW Vannier (1996) Hippocampal atrophy in recurrent major depression. *Proc. Natl. Acad. Sci. USA* **93**, 3908-3913.

Shors TJ, G Miesegaes, A Beylin, M Zhao, T Rydel and E Gould (2001) Neurogenesis in the adult is involved in the formation of trace memories. *Nature* **410**, 372-376.

Sieradzan KA, AO Mechan, L Jones, EE Wanker, N Nukina and DM Mann (1999) Huntington's disease intracellular inclusions contain truncated, ubiquitinated huntingtin protein. *Exp. Neurol.* **156**, 92-99.

Sleegers K, G Roks, J Theuns, YS Aulchenko, R Rademakers, M Cruts, WA Van Gool, C Van Broekhoven, P Heutink, BA Oostra, JC Van Swieten and CM Van Duijn (2004) Familial clustering and genetic risk for dementia in a genetically isolated Dutch population. *Brain* **127**, 1641-1649.

Snell RG, JC MacMillan and JP Cheadle, I Fenton, LP Lazarou, P Davies, ME MacDonald, JF Gusella, PS Harper and DJ Shaw (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. *Nat. Genet.* **4**, 393-397.

Song H, CF Stevens and FH Gage (2002a) Astroglia induce neurogenesis from adult neural stem cells. *Nature* **417**, 39-44.

Song H, CF Stevens and FH Gage (2002b) Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. *Nat. Neurosci.* **5**, 438-445.

Spillantini MG and M Goedert (1998) Tau protein pathology in neurodegenerative diseases. *Trends Neurosci.* **21**, 428-433.

Spires TL, HE Grote, S Garry, PM Cordery, A Van Dellen, C Blakemore and AJ Hannan (2004) Dendritic spine pathology and deficits in experience-dependent dendritic spine plasticity in R6/1 Huntington's disease mice. *Eur. J. Neurosci.* **19**(10), 2799-2807.

Stamer K, R Vogel, E Thies, E Mandelkow and EM Mandelkow (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. *J. Cell. Biol.* **156**, 1051-1063.

Strittmatter WJ, AM Saunders and D Schmechel (1993) Apolipoprotein E: high-affinity binding to β -amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. *Proc. Natl. Acad. Sci. USA* **90**, 1977-1981.

Sturchler-Pierrat C, D Abramowski, M Duke, KH Wiederhold, C Misti, S Rothacher, B Ledermann, K Burki, P Frey, PA Paganetti, C Waridel, ME Calhoun, M Jucker, A Probst, M Staufenbiel and B Sommer (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. *Proc. Natl. Acad. Sci. USA* **94**, 13287-13292.

Su JH, M Zhao, AJ Anderson, A Srinivasan and CW Cotman (2001) Activated caspase-3 expression in Alzheimer's and aged control brain: correlation with Alzheimer pathology. *Brain Res.* **898**, 350-357.

Subbarao KV, JS Richardson and LC Ang (1990) Autopsy samples of Alzheimer's cortex show increased peroxidation *in vitro*. *Neurology* **45**, 1594-1601.

Svendsen CN, MA Caldwell, J Shen, MG ter Borg, AE Rosser, P Tyers, S Karmiol and SB Dunnett (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease. *Exp. Neurol.* **148**, 135-146.

Tamaoka A, F Miyatake, S Matsuno, K Ishii, S Nagase, N Sahara, S Ono, H Mori, K Wakabayashi, S Tsuji, H Takahashi and S Shoji (2000) Apolipoprotein E allele-dependent antioxidant activity in brains with Alzheimer's disease. *Neurology* **54**, 2319-2321.

Tanaka N, T Kinoshita, T Asada and Y Ohashi (2003) Log-linear models for assessing gene-age interaction and their application to case-control studies of the apolipoprotein E (apoE) gene in Alzheimer's disease. *J. Hum. Genet.* **48**, 520-524.

Tanapat P, NB Hastings, TA Rydel, LA Galea and E Gould (2001) Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. *J. Comp. Neurol.* **437**, 496-504.

Taupin P and FH Gage (2002) Adult neurogenesis and neural stem cells of the central nervous system in mammals. *J. Neurosci.* **69**, 745-749.

Taylor JP, J Hardy and KH Fischbeck (2002) Toxic proteins in neurodegenerative diseases. *Science* **296**, 1991-1995.

Temple S (2001) The development of neural stem cells. *Nature* **414**, 112-117.

Thome J, S Impey, D Storm and RS Duman (2000) cAMP-response element-mediated gene transcription is upregulated by chronic antidepressant treatment. *J. Neurosci.* **20**, 4030-4036.

Togo T, N Sahara, SH Yen, N Cookson, T Ishizawa, M Hutton, R De Silva, A Lees and DW Dickson (2002) Argyrophilic grain disease is a sporadic 4-repeat tauopathy. *J. Neuropathol. Exp. Neurol.* **61**, 547-556.

Tolbert LM, DS Russell and RS Duman (2003) Norepinephrine activates extracellular-regulated kinase in cortical neurons. *Biol. Psychiatry* **54**, 983-993.

Tolnay M and A Probst (1999) Review: tau protein pathology in Alzheimer's disease and related disorders. *Neuropathol. Appl. Neurobiol.* **25**, 171-187.

Tomlinson BE, G Blessed and M Roth (1970) Observations on the brains of demented old people. *J. Neurol. Sci.* **11**, 205-242.

Uboga NV and JL Price (2000) Formation of diffuse and fibrillar tangles in aging and early Alzheimer's disease. *Neurobiol. Aging* **21**, 1-10.

Utsumi T, N Sakurai, K Natano and R Ishisaka (2003) C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally N-myristoylated upon caspase-mediated cleavage and targeted to mitochondria. *FEBS Lett.* **539**, 37-44.

Van Dellen A and AJ Hannan (2004) Genetic and environmental factors in the pathogenesis of Huntington's disease. *Neurogenetics* **5**, 9-17.

Van Dellen A, C Blakemore, R Deacon, D York and AJ Hannan (2000a) Delaying the onset of Huntington's in mice. *Nature* **404**, 721-722.

Van Dellen A, J Welch, RM Dixon, P Cordery, D York, P Styles, C Blakemore and AJ Hannan (2000b) N-acetylaspartate and DARPP-32 levels decrease in the corpus striatum of Huntington's disease mice. *NeuroReport* **11**, 3751-3757.

Van Praag H, BR Christie, TJ Sejnowski and FH Gage (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. *Proc. Natl. Acad. Sci. USA* **96**, 13427-13431.

Van Praag H, G Kempermann and FH Gage (2000) Neural consequences of environmental enrichment. *Nature Rev. Neurosci.* **1**, 191-198.

Van Praag H, AF Schinder, BR Christie, N Toni, TD Palmer and FH Gage (2002) Functional neurogenesis in the adult hippocampus. *Nature* **415**, 1030-1034.

Varadarajan S, SM Yatin, M Aksanova and DA Butterfield (2000) Review: Alzheimer's amyloid β -peptide-associated free radical oxidative stress, and neurotoxicity. *J. Struct. Biol.* **130**, 184-208.

Vonsattel JPG and M DiFiglia (1998) Huntington disease. *J. Neuropathol. Exp. Neurol.* **57**, 369-384.

Vonsattel JPG, RH Myers, TJ Stevens, RJ Ferrante, ED Bird and EP Richardson (1985) Neuropathological classification of Huntington's disease. *J. Neuropathol. Exp. Neurol.* **44**, 559-577.

Walker RH, S Morgello, B Davidoff-Feldman, A Melnick, MJ Walsh, P Shashidharan and MF Brin (2002) Autosomal dominant chorea-acanthocytosis with poly-glutamine-containing neuronal inclusions. *Neurology* **58**, 1031-1037.

Walker RH, J Jankovic, E O'Hearn and RL Margolis (2003) Phenotypic features of Huntington's disease-like 2. *Mov. Disord.* **18**, 1527-1530.

Wang J, G Xu, V Gonzales, D Fromholt, NG Copeland, NA Jenkins and DR Borchelt (2002) Fibrillar inclusions and motor neuron degeneration in transgenic mice expressing superoxide dismutase 1 with a disrupted copper-binding site. *Neurobiol. Dis.* **10**, 128-138.

Weaver CL, M Espinoza, Y Kress and P Davies (2000) Conformational changes as one of the earliest alterations of tau in Alzheimer's disease. *Neurobiol. Aging* **21**, 719-727.

Wilson PW, RH Myers, MG Larson, JM Ordovas, PA Wolf and EJ Schaefer (1994) Apolipoprotein E alleles, dyslipidemia, and coronary heart disease. The Framingham Offspring Study. *JAMA* **272**, 1666-1671.

Wolf DH, S Numan, EJ Nestler and DS Russell (1999) Regulation of phospholipase C γ in the mesolimbic dopamine system by chronic morphine administration. *J. Neurochem.* **73**, 1520-1528.

Wong PC, CA Pardo, DR Borchelt, MK Lee, NG Copeland, NA Jenkins, SS Sisodia, DW Cleveland and DL Price (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. *Neuron* **14**, 1105-1116.

Yamamoto N, K Hasegawa, K Matsuzaki, H Naiki and K Yanagisawa (2004) Environment- and mutation-dependent aggregation behaviour of Alzheimer amyloid beta-protein. *J. Neurochem.* **90**, 62-69.

Yatin SM, S Varadarajan, CD Link and DA Butterfield (1999) *In vitro* and *in vivo* oxidative stress associated with Alzheimer's amyloid beta-peptide (1-42). *Neurobiol. Aging* **20**, 325-330; discussion 339-342.

Yoshida H and M Goedert (2002) Molecular cloning and functional characterization of chicken brain tau: isoforms with up to five tandem repeats. *Biochemistry* **41**, 15203-15211.

Yu ZX, SH Li, J Evans, A Pillarisetti, H Li and XJ Li (2003) Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease. *J. Neurosci.* **23**, 2193-2202.

Zhang Z, P Nadeau, W Song, D Donoviel, M Yuan, A Bernstein and BA Yankner (2000) Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. *Nat. Cell. Biol.* **2**, 463-465.

Zhao M, S Momma, K Delfani, M Carlen, RM Cassidy, CB Johansson, H Brismar, O Shupliakov, J Frisen and AM Janson (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. *Proc. Natl. Acad. Sci. USA* **100**, 7925-7930.

Zhong H and KP Minneman (1999) Differential activation of mitogen-activation protein kinase pathways in PC12 cells by closely related α 1-adrenergic receptor subtypes. *J. Neurochem.* **72**, 2388-2396.

Zhu X, CA Rottkamp, H Boux, A Takeda, G Perry and MA Smith (2000) Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. *J. Neuropathol. Exp. Neurol.* **59**, 880-888.

Zhu X, AK Raina, CA Rottkamp, G Aliev, G Perry, H Boux and MA Smith (2001) Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. *J. Neurochem.* **76**, 435-441.

Zhu X, HG Lee, AK Raina, G Perry and MA Smith (2002) The role

of mitogen-activated protein kinase pathways in Alzheimer's disease. *Neurosignals* **11**, 270-281.

Zuccato C, A Ciammola, D Rigamonti, BR Leavitt, D Gottfredo, L Conti, ME MacDonald, RM Friedlander, V Silani, MR Hayden, T Timmus, S Sipione and E Cattaneo (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. *Science* **293**, 493-498.

Zuccato C, M Tartari, A Crotti, D Gottfredo, M Valenza, L Conti, T Cataudella, BR Leavitt, MR Hayden, T Timmus, D Rigamonti and E Cattaneo (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. *Nat. Genet.* **35**, 76-83.