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Factors associated with predisposition and vulnera-
bility to neurodegenerative disorders may be
described usefully within the context of gene-envi-
ronment interplay. There are many identified genet-
ic determinants for so-called genetic disorders, and
it is possible to duplicate many elements of recog-
nized human neurodegenerative disorders in either
knock-in or knock-out mice. However, there are
similarly, many identifiable environmental influ-
ences on outcomes of the genetic defects; and the
course of a progressive neurodegenerative disorder
can be greatly modified by environmental elements.
Constituent cellular defense mechanisms responsive
to the challenge of increased reactive oxygen species
represent only one crossroad whereby environment
can influence genetic predisposition. In this paper
we highlight some of the major neurodegenerative
disorders and discuss possible links of gene-environ-
ment interplay. The process of adult neurogenesis in
brain is also presented as an additional element that
influences gene-environment interplay. And the so-
called priming processes (i.e., production of recep-
tor supersensitization by repeated drug dosing), is
introduced as yet another process that influences
how genes and environment ultimately and co-
dependently govern behavioral ontogeny and out-
come. In studies attributing the influence of genetic
alteration on behavioral phenotypy, it is essential to
carefully control environmental influences.
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INTRODUCTION

Most of the neurodegenerative disorders that have
received some degree of documentation, such as
Alzheimer's disease (AD), Parkinson's disease (PD),
amyotrophic lateral sclerosis (ALS) and Huntington's
disease (HD) are characterized by neuronal damaged
caused putatively by toxic, abnormal, aggregate-prone
proteins or 'clusters'. A recent review by Petrucelli and
Dawson (2004) outlines and describes three different
aspects of neurodegenerative mechanisms involved in
these disorders, as follows: (1) the genetic configura-
tion underlying the abnormal processing and accumu-
lation of misfolded proteins in the neurodegenerative
diseases, using PD as a model disorder, (2) an under-
standing and consideration of the cellular mechanisms
for disposal of abnormal proteins, and the effects of
toxic protein accumulation on the ubiquitin proteasome
system and neuronal survival, and (3) the development
and challenges offered by cell culture and animal mod-
els leading to rational and effective treatment strate-
gies. In the realm of neurodegeneration, there are
known genetically-associated disorders such as
ALS/motor neuron disease, HD, early-onset PD, myas-
thenia gravis, and others. ALS/motor neuron disease
can be inherited or acquired by consumption of foods
containing a high content of abnormal excitatory amino
acids. HD is an autosomal dominant disorder, caused
by abnormal expansion in the length of a CAG triplet
repeat sequence in a gene on chromosome 4 (i.e., the
huntingtin gene). Myasthenia gravis can be autosomal
and dominantly inherited; or caused by thymus-derived
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autoimmune production of anti-AChR (acetylcholine
receptors). PD is usually idiopathic although there are
inheritable types (Graham and Lantos, 2002; see
Palomo et al., 2003).

There are also a number of human prion-associated
disorders including Creutzfeldt-Jakob disease (CJD),
Gerstmann-Straussler-Scheinker disease (GSS), and
kuru. CJD and GSS are dominantly inherited disorders;
or they, like kuru, can be acquired by infection
(Graham and Lantos, 2002). In other circumstances,
genetic and mutational alterations appear to have con-
tributed to a range of disorders affecting the brain,
including Down's Syndrome, focal cerebral and global
ischemia, and ALS (Groner ef al., 1985; Epstein et al.,
1987; Chan PH et al., 1993; Gurney et al., 1994; Wong
etal., 1995; Bruijn et al., 1997; Murakami ef al., 1997).
An outline of the neurotoxic action underlying neu-
ronal injury and the eventual neuroprotective/neu-
rorestorative propensities of various molecular mecha-
nisms is outlined (Beal et al., 2000).

Neurodevelopmental disorders include attention-
deficit hyperactivity disorder (ADHD), perhaps certain
motor/dyskinesic aspects of schizopsychotic disorders
with Parkinson-like neuroleptic syndromes, perhaps
anxiety disorders including obsessive compulsive dis-
order (OCD), and elements of affective disorders,
including mania (see Palomo et al., 2002b). Drug-
induced developmental disorders include fetal alcohol
syndrome. Treatments in ontogeny with GABA mimet-
ics or NMDA receptor antagonists are known to pro-
duce extensive neuronal apoptosis in brain (Olney et
al., 2002), and such neuronal loss can carry forward
into behaviorally-associated (dysfunctional) disorders
(see Palomo et al., 2002a). The role of apoptosis in HD,
too, has been addressed extensively (cf. Hickey and
Chesselet, 2003). It is not unthinkable that many
aspects of neurodegenerative disorder originate, on a
cellular level, from neurodevelopmental liabilities that
occurred under earlier periods of individuals' brain
development, for example due to interferences of either
a predominantly genetic or environmental (pharmaco-
logical) nature to the preprogramming of neuronal
death or to direct toxic cell death. Thus, Fredriksson
and Archer (2004) treated mouse pups on either post-
natal days 10 or 11 with either the NMDA antagonists,
dizocilpine (MK-801, 3 x 0.5 mg/kg) or ketamine (50
mg/kg), or ethanol (3 x 2.5 mg/kg). Fluoro-jade stain-
ing indicated marked apoptotic neurodegeneration in
several brain regions following sacrifice of some of the
pups 24 hours later. The functional analyses indicated
marked deficits and hyperactivity in spontaneous
motor behaviour; the hyperactivity was in all cases

abolished by a low dose of d-amphetamine (0.1
mg/kg). Marked deficits in radial maze learning were
obtained, and the deficit induced by MK-801 was abol-
ished by d-amphetamine. In the circular swim, there
was no deficit in the acquisition of the task but reloca-
tion of the submerged platform induced marked
deficits in the Mk-801, ketamine and ethanol treated
mice. These NMDA-antagonist-induced postnatally
mediated effects are discussed in terms of a useful
model of ADHD.

Not to be ignored is the potential of a variety of sub-
stances, not restricted to substances of abuse, to pro-
duce long-lived changes in the brain after only several
exposures (Palomo et al., 2002a; 2004). For example,
when rats are treated repeatedly, once daily for several
consecutive days, with even low doses of the dopamine
D, receptor agonist quinpirole (in ontogeny, at old age,
or at any stage of ontogeny), there are life-long accen-
tuated responses to subsequent quinpirole treatments
(Kostrzewa et al., 1993; 2003; 2004; Brus et al., 2003).
Such changes represent a neurotoxic outcome, but
these changes are not necessarily accompanied by neu-
rodegenerative changes, or even changes in dopamine
D, receptor binding parameters (Kostrzewa and Brus,
1991). This highlights the potential of perhaps a library
of substances that are able to produce life-long exag-
gerated (or inhibited) responses in later life, following
exposures during ontogeny, even exposure in utero.

These above examples demonstrate that both genet-
ics and environment are important in the etiology of
neurodegenerative disorders, with both genes and envi-
ronment coordinately interacting in many of the disor-
ders (Graham and Lantos, 2002). In this paper a few
examples of some of the links or suspected links
between genetics and environment in the etiology of
neurodevelopmental or neurodegenerative disorders
are presented and discussed.

The flip side of the coin, neurogenesis, was thought
until recently to be specifically an ontogenetic aspect
of central nervous system development. However, dur-
ing the last 5-10 years there has been convincing evi-
dence that new neurons are produced in adulthood - not
only in lower vertebrates but in mammalian species
including man (Eriksson et al., 1998; Gould et al.,
2001; Zhao et al., 2003). Moreover, neurogenesis is
now considered to be a viable mechanism accounting
for the clinical effect of antidepressants and mood sta-
bilizers (Chen et al., 2000; Malberg et al., 2000; Moore
et al., 2000; Czeh et al., 2001, Santarelli et al., 2003).

Over the past 20 plus years, although much has been
determined on mechanisms attending neurogenesis and
neurodegeneration particularly in regards to pro- and
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anti-apoptotic factors, there is still much to be learned.
In discussing neurogenesis it is reasonable to state that
our current understanding of this process in adult mam-
malian brain is still quite primitive. A caveat is that
(drug-) induced neurogenesis will not necessarily over-
come the dying of neurons in neurodegenerative disor-
ders. In reality, induced neurogenesis is region-specif-
ic, and as such, the outcome is varied. Therefore, new
neurons and new axonal growth will not necessarily
result in regeneration of the dying neural tracts and
restoration of function. In the case of antidepressant-
induced or lithium-induced neurogenesis, the end-point
is a change in mood. Therefore, there are aspects of
neurodegenerative disorders and elements of psychi-
atric disorders accompanying the theme of neurode-
generation and neurogenesis.

HUNTINGTON'S DISEASE (HD)

Symptoms of HD usually begin in midlife and include
motor dysfunction (including ataxia, lack of coordina-
tion, chorea and rigidity), cognitive deficits progress-
ing to dementia, and psychiatric disturbances (cf. Ross
et al., 1997). The mutation associated with HD occurs
nears the N-terminus of the large protein, huntingtin
(htt), and expansions beyond a threshold of 36 CAGs
induce the disorder (Huntington's Disease
Collaborative Research Group, 1993). The normal Az
protein appears to play a role during embryogenesis as
well as in gene regulation and vescicular trafficking in
mature cells (Zuccato et al., 2001; 2003). Mice with a
CAG repeat expansion in the coding region of HPRT, a
'housekeeping' enzyme not associated with any neuro-
logical disease, also develop a progressive neurode-
generative phenotype (Ordway et al, 1997), i.e.,
expanded polyglutamine tracts appear to have innate
neurotoxicity. An expanded polyglutamine confers a
toxic 'gain-of-function' on the disease protein, which
progressively and selectively disrupts the functioning
of vulnerable populations of neurons. Postmortem
brains of HD patients indicate substantial atrophy with
marked, selective loss of GABAergic, medium spiny,
neurons of the caudate and putamen (Vonsattel ef al.,
1985; Vonsattel and DiFiglia, 1998). Although hit is
widely expressed in the embryo, adult nervous system,
and periphery, neurons of the cerebral cortex and medi-
um spiny neurons are preferentially damaged in HD
(Bates et al., 2002; Bates, 2003). The spatiotemporal
expression patterns of At and other CAG repeat disease
genes do not correspond to the spatiotemporal vulnera-
bility of specific neuronal populations in the diseased
brains. Note that the number of repeat units is highly

predictive for the age-of-onset of the disorder (e.g.,
Andrews et al., 1993; Duyao et al., 1993; Snell et al.,
1993; Rubinsztein et al., 1996; Arning et al., 2004).
Variation in repeat length provides a molecular basis
for the phenomenon of "anticipation" wherein other
factors contribute, especially in cases with pathological
CAG repeats in the range 35-45 (Kehoe et al., 1999).
Selective vulnerability of neuronal populations may be
mediated by disrupted functioning of a subset of
synapses subsequent to aberrant gene expression and
protein regulation.

Cortical degeneration of neurons projecting to the
basal ganglia is seen in the deeper layers, i.e., layers 3,
5 and 6. Less affected areas include the globus pallidus,
subthalamic nucleus and amygdala. Structural determi-
nations and aggregations of the mutant A#f protein (cf.
Perutz, 1994; Scherzinger et al., 1997; 1999: Yu et al.,
2003), as well as brain pathology determination of HD
patients and transgenic mice expressing mutant /#f pro-
tein, show the /#f immunoreactive aggregates in nuclei
of neurons throughout the CNS (Davies et al., 1997;
Becher et al., 1998; ; Gutekunst et al., 1999). Htt inclu-
sions are distributed also throughout the cytoplasm of
most neuronal populations, outnumbering nuclear
inclusions (Gutekunst et al., 1999). Immunocyto-
chemical studies have suggested that a proteolytic
event occurs within exon 2 of full-length mutant A#f to
create an aggregating fragment (Hodgson et al., 1999;
Sieradzan et al., 1999; Lunkes et al., 2002). Further,
the brains of mice expressing the N171-fragment of Azt
accumulate a predicted protein product and a C-termi-
nally truncated product (Schilling et al., 1999).
Although there is a great deal of available research,
animal models (e.g., Burright et al., 1995; Schilling et
al., 2001b; Wang et al., 2002) of HD appear limited in
the extent to which they model the disorder: 'Knock-in'
or YAC transgenic mice demonstrate some of the early
features of the disorder but the behavioral phenotype is
generally of late onset and does not progress to prema-
ture death (Lin et al., 2001). The R6/2 and N171-82Q
mouse models develop changes in motor performance
and die prematurely (Jankowsky et al, 2002).
Recently, Schilling et al. (2004), using the HD-N171-
82Q model, compared the efficacy with which envi-
ronmental, pharmacological and genetic interventions
ameliorated the functional and pathological features.
Thus, an enriched environment, as well as treatment
with coenzyme Q10 (an energy metabolism enhancer),
improved the motor skills of these mice, although
longevity was not prolonged. Several other pharmaco-
logical treatments, including remacemide (glutamate
receptor antagonist), celecoxib (cyclo-oxygenase-2,
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COX-2, inhibitor) and chlorpromazine (prion inhibitor)
were ineffective (Schilling et al., 2004, see also Van
Dellen et al., 2000a and Schilling ef al., 2001a ). Other
genetic and environmental factors contributing to the
pathogenesis of HD in the clinic and laboratory setting
have been outlined (Van Dellen and Hannan, 2004).

Disrupted neuronal gene expression in HD mice cov-
ers both receptor and synaptic signal transduction path-
ways (Cha et al., 1998; Bibb et al., 2000; Chan EY et
al., 2002). The loss of specific receptor expression pre-
cedes loss of neurons and onset of clinical symptoms.
For example, there is downregulation of cannabinoid
CB, receptors in the basal ganglia of both HD patients
and mouse models (Glass et al., 1993; 2000; 2004;
Denovan-Wright and Robertson, 2000; Lastres-Becker
et al., 2002a,b). Decreased ionotropic and metabotrop-
ic glutamate receptor binding in molecules mediating
synaptic and intraneuronal signaling in striatum, cortex
and other regions is seen in HD mice (Van Dellen et al.,
2000b; Luthi-Carter et al., 2002a,b). This evidence
implies extensive inter- and intra-neuronal signaling
deficits, with pre- and post-synaptic function disrup-
tions in HD mice. Altered synaptic densities with asso-
ciated pathological changes in neuronal morphology in
postmortem HD patient brains and various lines of
transgenic HD mice is observed (Ferrante ef al., 1991;
Guidetti et al., 2001; Klapstein et al., 2001 Spires et
al., 2004). Medium spiny neurons, the cell population
in the striatum most affected in HD (but is also highly
affected in PD), receives extensive input from the cor-
tex - which supports the notion that the cumulative
effects of receptor changes and synaptic dysfunction
could mediate chronic neurotoxicity.

Using striatal primary neuronal cultures from HD94
mice (i.e., htt exon | protein with a 94 polyglutamine
repeat, HD94-htt), Diaz-Hernandez (2004) showed that
HD94-htt immunocytolocalization was primarily in
nuclei and intraneuronal aggregates. Also, there was no
change in proteasome proteolytic activity and no
change in expression of LMP2 proteasome subunits of
the cultured cells, unless IFN-y was added - indicating
that the induction of proteasome activity requires an
extacellular mediator. This synergism between an
immune modulator (IFN-y) and the ubiquitin-protea-
some system is important in the pathogenesis associat-
ed with HD.

Huntington's disease-like 2 (HDL2) is an autosomal
dominantly inherited disorder (Margolis et al., 2001)
caused by trinucleotide repeat expansions (Holmes et
al., 2001), and bears strong resemblance to clinical
phenotype, inheritance pattern, and neuropathological
features of HD. The genetic mutation associated with

HDL2 has been characterized as a CTG/CAG trinu-
cleotide repeat expansion within the junctophilin-3
(JPH3) gene on chromosome 16q24.3 (ibid).
Intranuclear inclusions immunoreactive for expanded
polyglutamine repeats are observed in the brains of
HDL2 patients (Walker et al., 2002). JPH3, the protein
product of the gene associated with HDL2, would seem
to modulate calcium regulation in junctional mem-
branes: mice lacking JPH3 show impaired motor coor-
dination (Nishi et al., 2002). Walker et al. (2003) have
described the clinical features of the disorder to include
chorea, dystonia, parkinsonism and cognitive deficits
with marked phenotypic variations in the patients. With
one exception (patient of Mexican descent), all patients
reported are of African ancestry, with no patients of
Caucasian ancestry yet found (Bauer ef al., 2002). The
hereditary HD ‘'phenocopies' include distinguishing
features: dementia, depression, chorea, dystonia,
parkinsonism, expanded/normal HDL?2 triplets and
acanthocytosis (Kambouris et al., 2000; Moore et al.,
2001; Richfield et al., 2002).

The potential for neurogenesis through transplanta-
tion of embryonic neurons or stem cells offers a prom-
ising therapeutic strategy for the neurodegenerative
disorders (Svendsen et al., 1997; Freed et al., 2001).
The discovery of endogenous stem/progenitor cells in
the hippocampus and subependymal layer of the basal
ganglia in the adult mammlian brain offers the possi-
bility that these undifferentiated cells may generate
neurons for cell replacement in HD; neural stem cells
in the rodent brain subependymal layer, adjacent to the
caudate nucleus, were found to proliferate and differ-
entiate into neurons (Arvidsson et al., 2002; Parent et
al., 2002; Curtis et al., 2003). Recently, Curtis et al.
(2003) examined postmortem control and HD human
brain tissue using the cell cycle marker proliferating
cell nuclear antigen (PCNA), the neuronal marker BIII-
tubulin, and the glial cell marker, glial fibrillary acidic
protein (GFAP). They observed a significant increase
in cell proliferation in the subependymal layer in HD
compared with control brains. The extent of cell prolif-
eration increased with neuropathological severity and
increasing CAG repeats in the HD gene, with the HD
group. Furthermore, PCNA+ cells were shown to coex-
press PlII-tubulin or GFAP, an indication of neuronal
and glial cell generation in the subependymal layer of
the human brain. Taken together, these findings present
evidence for increased progenitor cell proliferation and
neurogenesis in the HD adult brain (ibid, but see also
Eriksson ef al., 1998 and Luthi-Carter et al., 2000).

Recent evidence indicates that environmental factors
may modify the onset and progression of HD, and pos-
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sibly other neurodegenerative disorders. Both molecu-
lar and cellular mechanisms may mediate the polyglu-
tamine-induced toxic 'gain-of-function' and associated
gene-environment interplay in HD (Li JL ez al., 2003).
The key aspects of the disorder seem to include abnor-
mal protein-protein interactions, selective disruptions
of gene expression and 'pathological plasticity' of
synapses in specific brain regions (cf. Hannan, 2004a).
The development of "enviromimetics" may mimic the
effects of specific environmental stimuli (e.g., environ-
mental enrichment), thereby instigating therapeutic
strategies and deepening the interactive understanding
and functional significance of neurogenesis (¢f. Van
Praag et al., 2000; Kempermann et al., 2004; see
below). Histological quantifications of enrichment
studies (e.g., Van Dellen et al., 2000a) indicate the
delay of degenerative loss of cerebral volume in HD
mice. Further analyses in R6/1 HD mice and early-
onset R6/2 HD mice confirm a robust effect of envi-
ronmental enrichment (Hockly et al., 2003).
Nevertheless, a primary conceptualization of the
molecular and cellular mechanisms would appear to
present a key step in the eventual development of new
therapies for HD (Bates and Hockly, 2003; Hersch,
2003). Certainly, questions pertaining to eventual phar-
macological therapeutic measures are particularly per-
tinent (Hannan, 2004b).

Tau-Associated Neurodegeneration

Neurofibrillary tangles are composed of abnormal
aggregates of the cytoskeletal protein, tau (Lee et al.,
2001; Stamer et al., 2002). In AD, insoluble neurofib-
rillary tangles composed of hyperphosphorylated
forms (see below) of tau accumulate initially within the
entorhinal cortex and CA1 subfield of the hippocampus
(Grundke-Igbal et al., 1986; Braak and Braak, 1991).
An aberrant folded conformational change in tau, rec-
ognized with antibody MC1, appears to be one of the
earliest tau pathological events (Jicha et al., 1997;
1999; Uboga and Price, 2000; Weaver et al., 2000).
Thus, a variety of alterations in tau, reducing its bind-
ing affinity to microtubules, lead to depolymerization
of microtubules that contribute to the neuronal loss
seen in AD (Drechsel et al., 1992; Biernat et al., 1993;
Bramblett et al., 1993). Among the family of micro-
tubule associated proteins (MAPs) are MAPIA,
MAPIB, MAP2 and tau - the latter being preferential-
ly located in axons (Binder et al., 1985) and associated
in part with cytoarchitectural structure. In a number of
neurodegenerative disorders known as tauopathies, tau
becomes hyperphosphorylated and forms aberrant fib-
rillar polymers that deposit in neurons and glia. As

described by Ferrer (2004) there are several
tauopathies: AD, Pick's disease (PiD), progressive
supranuclear palsy (PSP), corticobasal degeneration
(CBD), argyrophilic grain disease (AGD), and familial
frontotemporal dementia and parkinsonism linked to
chromosome 17 (FTDP-17) (with tau gene FTDP-17
mutation (Spillantini and Goedert, 1998; Buée et al.,
2000; Lee et al., 2001; Ingram and Spillantini, 2002;
Togo et al., 2002; Ghetti et al., 2003). In all of these
tauopathies there is increased expression of stress-acti-
vated kinase, c-jun N-terminal kinase (SAPK/JINK) and
kinase p38 in neurons and glia containing hyperphos-
phorylated tau. Because there is increased expression
of phosphorylated SAPK/JNK and p38 in the region of
BA4 deposits and in the brain of transgenic mice
(Tg2576) with the double APP Swedish mutation, A4
amyloid is thought to trigger stress kinase activation
and tau phosphorylation in the region where there are
amyloid deposits.

A recent study by Avila et al. (2004) shows through
in vitro experiments that phosphotau is actually prone
to assemble into fibrillar polymers. However, because
the tau gene is transcribed into nuclear RNA by alter-
native splicing, there are a variety of mRNA species
which, when transcribed, result in the production of tau
isoforms with different numbers of exons. Some iso-
forms are expressed only in early ontogeny and other
isoforms are preferentially expressed (Andreadis ef al.,
1995; Yoshida and Goedert, 2002). Tau isoforms
expressed in peripheral nerves are different from those
expressed in brain (Nufez, 1988; Goedert et al.,
1992c).

Caspases, cysteine aspartate proteases critically
involved in apoptosis, may be divided into initiator and
executioner caspases; the former initiating apoptosis by
activating executioner caspases, and the latter acting on
downstream effector substrates causes apoptotic pro-
gression leading to cell shrinkage, nuclear fragmenta-
tion and membrane blebbing (Kerr ef al., 1972). Much
evidence now indicates that caspases are activated in
the AD brain (Rohn ef al., 2001; Su ef al., 2001), and
that components of the neuronal cytoskeleton, includ-
ing tau, are targeted by caspases following apoptotic
stimuli (Fasulo et al., 2000; Gastard et al., 2003;
Utsumi et al., 2003). Though the role of tau caspase-
cleavage remains unresolved, there is evidence impli-
cating it in tangle pathology (Gamblin et al., 2003).
Recently, Rissman et al. (2004) tested the hypothesis
that caspase-cleavage of tau is an early event in tangle
formation in both AD and a transgenic model of the
disorder. They found that caspase-cleaved tau catalyzes
filament formation, adopts a conformation seen in
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early-stage tangles, and may be hyperphosphorylated.
Caspase-cleavage of tau colocalizes with amyloid-
(AB) and developing tangles in both transgenic mice
and AD brain. In primary cortical neurons, AB-induced
caspase activation leads to tau cleavage and generates
tangle-like morphology (Rapoport ef al., 2002; Rohn et
al., 2002; but see also McLaughlin, 1997). The hyper-
phosphorylation of tau, through promotion of paired
helical filament self-assembly, is the prevailing
hypothesis in the development of tangle pathology
(Alonso et al., 2001). Findings by Rissman et al
(2004), however, have demonstrated that ATau may be
phosphorylated after caspase-cleavage, implying that
the production of Atau does not preclude subsequent
phosphorylation.

Brain tau isoforms are divided into two domains: the
projection domain containing the amino terminal two-
thirds of the molecule [subdivided into regions either
proline-rich or with a high number of acidic residues];
and the microtubule-binding domain containing the
carboxy terminal one-third of the molecule [subdivid-
ed into either a true tubulin-binding region or an acidic
carboxy terminal region].

Tau assembly and aggregation as a hyperphosphory-
lated aggregate occurs primarily in a 2-step process.
Several kinases are involved in tau hyperphosphoryla-
tion. The first step in hyperphosphorylation of tau pro-
ceeds via a proline directed protein kinase (PDPK
kinase) (e.g., GSK3) or a non-PDPK kinase (NPDPK
kinase) (e.g., protein kinase A, PKA). Lithium, an
inhibitor of GSK3, and also H89, an inhibitor of PKA,
each inhibit formation of phosphorylated tau. In a sec-
ond step, in the presence of hydroxynonenal (HNE) - a
lipid peroxidation product oft found in Alzheimer
patients, hyperphosphorylated tau forms aggregates. A
'rescue’ pathway, involving dephosphorylation of phos-
photau by phosphatase 2A (PP2A), prevents aggrega-
tion since dephosphorylated tau does not assemble.
When this pathway is inhibited in vitro by okadaic
acid, there is an increase in phosphorylated tau aggre-
gates (Avila et al., 2004).

Extracellular signal-regulated mitogen-activated pro-
tein kinases (MAPK/ERK1 and MAPK/ERK?2, p44,
p42), stress-activated protein kinases c-jun N-terminal
kinase (SAPK/INK) and p38 kinase phosphorylate tau
(Goedert et al., 1997; Lovestone and Reynolds, 1997;
Reynolds et al., 1997a,b; 2000; Jenkins et al., 2000;
Buée-Scherrer and Goedert, 2002).

Expression of MAPK/ERK, SAPK/JNK, p38 in AD
The fibrillization of tau protein is a hallmark injury in
AD (Kopke et al., 1993; Buee et al., 2000; Garcia-

Sierra et al., 2000; Galvan et al., 2001). In addition to
the cAMP-dependent protein kinase pathway
(Shaywitz and Greenberg, 1999), the MAPK cascade
also activates CREB (Impey et al., 1999; Roberson et
al., 1999). The signaling components of the MAPK
cascade, including the extracellular regulated protein
kinase (ERK), are expressed at high levels in the brain
and CNS (Banes et al., 1999; Wolf et al., 1999).
MAPK, that play a critical role in intracellular signal-
ing, are activated by phosphorylation in response to
external stressors. For example, traumatic brain injury
increases significantly phosphorylated-ERK, but not
p38 MAPK levels in rat brain (Otani, 2004).
Furthermore, there is an ever-increasing consensus that
indirect activation of monoamine receptors by antide-
pressant treatments increase neurotrophic factors that
activate the MAPK cascade (Pullarkat et al, 1998;
Russo-Neustadt ef al.,, 1999; Thome et al., 2000).
These monoamine receptors may influence the MAPK
pathway independent of neurotrophic factors, e.g.,
through the influence of noradrenaline on the phospho-
rylation of ERK (Zhong and Minneman, 1999; Tolbert
et al.,2003).

There is increased expression of MAPK/ERK,
SAPK/INK, p38 and PKA in tau deposits and NFTs
(Hensley et al., 1999; Knowles et al., 1999; Perry et
al., 1999; Zhu et al., 2000; 2001; 2002; Atzori et al.,
2001; Ferrer et al., 2001a,b; Pei ef al., 2001) and in
AD, PSP, CBD and PiD (Atzori ef al., 2001; Ferrer et
al.,2001a,b; Hartzler et al., 2002). Phosphorylated pro-
tein kinases are associated with tau deposits in AGD
(Ferrer et al., 2003). In a transgenic mouse expressing
tau protein with three mutations in the tubulin binding
region, present in FTDP-17 disorders, lithium reduces
formation of filamentous tau aggregates. This, there-
fore, indicates that GSK3 kinase plays a role not only
in tau phosphorylation but also in tau assembly per se
(Avila et al., 2004). In reference to preventive treat-
ments of neurodegenerative disorders, GSK3 and H89
represent potential targets for preventing formation of
tau aggregates in tauopathies, such as AD.

Neurofibrillary degeneration and related tauopathies,
e.g., frontotemporal dementia, correlates directly with
dementia (Tomlinson et al., 1970; Tolnay and Probst,
1999). The activity of protein phosphatase (PP)-2A is
compromised in the AD brain and may be one cause of
the abnormal hyperphorylation of tau and the conse-
quent neurofibrillary degeneration. Recently, Li L ez al.
(2004) demonstrated that the uncompetitive NMDA
antagonist, memantine, inhibits and reverses the PP-2A
inhibition-induced abnormal hyperphosphorylation
and accumulation of tau in organotypic cultures of rat
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hippocampal slices. These restorative effects of
memantine were not detected with either 5,7-
dichlororkynurenic acid or D(-)-2-amino-5-phospho-
pentanoic acid, NMDA receptor antagonists that are
active at the glycine binding site and the glutamate
binding site, respectively. Their results indicate: (i)
memantine inhibits and reverses PP-2a inhibition-
induced abnormal hyperphosphorylation of tau/neu-
rofibrillary degeneration, and (ii) the compound may
have applications for treatment of AD and other
tauopathies.

ALZHEIMER'S DISEASE

AD is characterized by loss of synapses and the pres-
ence of senile plaques and neurofibrillary tangles
(NFTs) in brain (Duyckaerts, 2004). NFTs are com-
posed of hyperphosphorylated tau aggregates of paired
helical filaments (PHFs) (Duyckaerts, 2004). The main
component of senile plaques is amyloid- (BA or BA4),
derived from a- or y-secretase cleavage of the BA pre-
cursor protein (B-APP) protein (Herreman et al., 2000;
Zhang et al., 2000). APP transgenic mice are character-
ized by AR deposition, amyloid plaques and learning
deficits (Games et al., 1995; Hsiao et al., 1996;
Sturchler-Pierrat ef al., 1997, McGowan et al., 2003).
Amyloid suppresses the induction of genes critical for
memory consolidation in APP + PS1 transgenic mice
(Dickey et al., 2004). Thus, the deposition of BA-pro-
tein is fundamental to the development of AD, on the
basis of genetic evidence (Selkoe, 1996; Helpern et al.,
2004; Kowalska, 2004; Reddy et al., 2004). For exam-
ple, Yamamoto et al. (2004) report that a membrane-
mimicking environment, generated in the presence of
detergents or a ganglioside, is sufficient for induction
of amyloid fibril formation from soluble AB-protein.
Hereditary variants of the protein, caused by amyloid
precursor gene mutations, including Dutch (E693Q),
Flemish (E692G) and Arctic (E693G) types, demon-
strate mutually different aggregation behaviour in these
environments. The Arctic type AB-protein, in contrast
to the wild-type and other variant forms, shows a
markedly rapid and higher level of amyloid fibril for-
mation in the presence of sodium dodecyl sulphate or
GM1 ganglioside, all of which indicates the presence
of favourable local environments for AB-protein fibril-
logenesis.

There are considered to be five genetic risks for AD:
1) mutations in the APP gene, 2) mutation in presenilin
1 gene, or 3) in the presenilin 2 gene (Bertran and
Tanzi, 2003), 4) alleles for apolipoprotein (ApoE), and
5) polymorphism of a gene on chromosome 12 encod-

ing o-2 macroglobulin. Recent association studies
showed that single nucleotide polymorphisms in the
glutathione-S-transferase €21 and glutathione-S-trans-
ferase Q2 gene regions are associated with age-of-
onset in both AD and PD (Li YJ et al., 2003). The pres-
ence of insoluble protein aggregates within neurons is
a common hallmark of the neurodegenerative disorders
(Taylor et al., 2002). These aggregates may represent a
common final pathway by compromising the axonal
transport through trapping of molecules which are
essential for cellular function, such as 'chaperons' and
the proteases. The AD-causing mutations in the APP
render valuable clues as to disease mechanisms, further
implying the relevance of AB-protein toxicity in spo-
radic AD. The highly penetrant mutations of early-
onset AD and/or PD implicate either A or APP, and a-
synuclein as a cause of toxicity and loss of neurons.
The APOE*E4 as a risk factor for AD brings choles-
terol and lipid metabolism into the equation for AR tox-
icity (LaDu et al., 2000). Glutathione-S-transferase Q1
appears involved in the activation of interleukin 1, and
glutathione-S-transferase Q1 variations may alter the
efficiency of interleukin 1 post-translational processing
(Laliberte et al., 2003), contributing to inflammatory,
neurotoxic hazard.

Human ApoE gene at locus 19q13.2, associated with
AD and coronary heart disease, exists in three common
isoforms, E2, E3, and E4, which are encoded by a gene
(APOE) with three alleles, €2, €3, and €4, with varying
frequencies in populations around the globe (Corbo and
Scacchi, 1999). Individuals who are carriers of the &4
allele are known to be at an increased risk for develop-
ing late onset AD (Strittmatter et al, 1993; see
Kamboh, 2004), although the mechanism remains
unknown. ApoE binds AB and it has been suggested that
ApoE is involved in the initiation of AB fibril formation
(Evans et al., 1995). This function has been demon-
strated in vitro (Ma et al., 1996), with E4 exhibiting the
strongest promotion of fibril formation. The carriership
of €4 is implicated too in the presentation of motor neu-
ron disease where possession of at least one copy is
associated with bulbar rather than limb onset
(AlChaalabi et al., 1996). ApoE exerts an isoform spe-
cific antioxidant role: E2 providing most protection and
E4 least protection (Miyata and Smith, 1996), consis-
tent with the observation that there is a markedly later
age-of-onset seen among €2 carriers, as opposed to &4
carriers (Corder et al., 1993; but see also Schneider et
al., 1995). For example Sleegers et al. (2004) found a
strong familial clustering of various forms of dementia
in an isolated Dutch population, of which a high per-
centage of late-onset AD could be explained by
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APOE*4, but 55% of the origin was still unknown (see
also Kamboh, 2004). ApoE is associated with the depo-
sition of A3 which is more prevalent with €4 carriers;
expression of ApoE is dramatically elevated in response
to brain injury and damage (Nicoll et al., 1995).

Age-of-onset, gender and ethnicity appear relevant
aspects of the apoE genotype. There is a gender differ-
ence in prevalence and age-of-onset for AD: women
with the €3e4 genotype show age-of-onset as early as
e4e4 homozygotes whereas in men the €3e4 genotype
provides the same (late) onset as €3¢3 (Payami ef al.,
1996). Finally, the carriership of €4 has been implicat-
ed also in Pick's disease, corticobasal degeneration and
progressive supranuclear palsy (Schneider er al.,
1995). The greater the number of €4 alleles an individ-
ual possesses, the younger the age of the individual at
disease onset. Age-of-onset of AD tends to occur later
among persons with the €2/e3 genotype (Borgaonkar et
al., 1993; Corder et al., 1993, 1994). Carriers of the ¢4
allele have a higher risk of AD than individuals with
the most common genotype, €3€3, and carriers of the
e2-allele have a lower risk (Ou et al., 1998; Wilson et
al., 1994). These tendencies appear in various ethnic
groups. In a meta-analysis, it was reported that the
apoE €4 effect is greater among Caucasians than
among Japanese older populations (Farrer et al., 1997).
In populations aged 80 years or more, the frequency of
occurrence of €4 carriers is lower and that of €2 is high-
er, than in younger people (Asada et al., 1996; Gerdes
et al.,2000). Tanaka et al. (2003) have carried out case-
control studies to ascertain gene-environment interac-
tions in disease-susceptibility for AD based on the
apolipoprotein E gene in Japan that identify gene and
environmental risk factors.

The AD brain is afflicted by extensive oxidative
stress, as indexed by protein oxidation, lipid peroxida-
tion, DNA and RNA oxidation, advanced glycation
end-products, protein nitration, mitochondrial abnor-
malities, reactive oxygen species (ROS) formation and
other markers (e.g., Markesbery, 1997; Butterfield et
al., 2001; Butterfield and Lauderback, 2002;).The 42-
amino acid form of the A [AB(1-42)], central to the
pathogenesis of AD, is coupled to the extensive oxida-
tive stress that is expressed in the form of AB3-associat-
ed free radical induced neurodegeneration in the AD
brain (Varadarajan et al., 2000). AB-peptide toxicity is
mediated by free radical damage to cell membranes
(Mark et al., 1997; Bruce-Keller et al., 1998; Reich et
al., 2001). Consistent with a free radical process, A3
causes lipid peroxidation in brain cell membranes, and
this is blocked by free radical antioxidants (Butterfield
et al., 1994; Avdulov et al., 1997; Butterfield, 1997;

Koppal et al., 1998; Lauderback et al., 2001; Pocernich
and Butterfield, 2003). The oxidative and neurotoxic
properties of AB(1-41) seem to be derived from the sin-
gle methionine residue at position 35 of the 42-mer
(Yatin et al., 1999; Butterfield and Kanski, 2002).
Thiobarbituric acid reactive substances (TBARS), an
index of lipid peroxidation, are increased in the frontal
lobe, but not cerebellum of AD patients (Subbarao et
al., 1990), as well as being increased in the sensory and
occipital cortex (Balazs and Leon, 1994). Reactive
aldehydes like 4-hydroxynonenal (HNE), a major
product of lipid peroxidation, and 2-propenal
(acrolein), due to free radical attack on polyunsaturat-
ed fatty acids, are longer lasting than free radicals and
may act at sites distant to their formation (Butterfield
and Stadtman, 1997; Pocernich and Butterfield, 2003).
Free HNE (Markesbery and Lovell, 1998) and protein-
bound (Montine et al., 1997; 1998; Sayre et al., 1997)
concentrations are elevated in several brain regions and
ventricular csf in AD patients, and may relate to APOE
allele type (Montine et al, 1999; Tamaoka et al.,
2000). Finally, glutathione S-transferase, with a high
detoxifying activity against HNE (Bruns et al., 1999),
is significantly reduced in the AD brain (Lovell and
Markesbery, 1998). Significantly, a vast accumulation
of evidence indicates that AB(1-42)-induced lipid per-
oxidation, with resultant free radical and reactive alde-
hyde formation, must offer an important factor in the
neurodegeneration observed in AD (Butterfield et al.,
2002), not least with regard to characteristics of envi-
ronment (Kanski et al., 2002).

In the context of brain aging and dementia, nitric
oxide (NO) and other reactive nitrogen species seem to
also play crucial roles in neuromodulation, transmis-
sion and plasticity but are involved too in neurodegen-
eration and inflammation. Acute and chronic inflam-
mation causes elevated NO formation and nitrosative
stress. Both NO and its toxic metabolite, peroxynitrite,
inhibit the mitochondrial respiratory chain, with result-
ant cellular energy deficiency and cell death; peroxyni-
trite susceptibility is dependent upon reduced intracel-
lular glutathione and cellular stress resistance path-
ways. Neurons have evolved integrated processes,
'longevity assurance' processes, that are composed of
"vitagenes" and include members of the HSP system,
e.g., HSP70 and HSP32, that detect and control diverse
types of stress. HSP32, heme oxygenase-1 (HO-1),
induction generates the potent antioxidant, bilirubin,
thereby offering neuroprotective potential pertinent to
role of the HO-1 gene in age-related oxidative and
nitrosative stress. Consistent with the notion of
endogenous cellular defense mechanisms (Calabrese et
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al., 2004), the maintenance/recovery of vitagenes
activity may delay the aging process and decrease the
occurrence of age-related neurodegenerative disorders.

Cholinergic dysfunction remains a consistent feature
of AD (e.g., Coyle et al., 1983). The co-localization of
acetylcholinesterase (AchE) with AB deposits in AD
brains (Mesulam, 1986; Moran et al., 1993), as well as
the capability of AChE to affect the processing of APP
(Mori et al., 1995) and aggregation of AB peptides
(Inestrosa et al., 1996) offers a link between APP and
cholinergic neurotransmission (Blusztajn and Berse,
2000). Transgenic mice expressing the C-terminal frag-
ment of the APP showed increased tissue levels of
AChE (Sberna et al., 1998). Double transgenic
expressing both mutations of human APP and a-synu-
clein showed a prominent age-dependent degeneration
of cholinergic neurons in the nucleus basalis and cau-
date-putamen (Masliah er al., 2001). In the APP23
mouse model of cerebral amyloidosis, modest AR
plaque-associated cholinergic changes in the aged neo-
cortex were observed, but no loss of cholinergic basal
forebrain neurons (Boncristiano et al., 2002). Luth et
al. (2003) using ultrastructural detection of ChAT-
immunostaining in cerebral cortical sections of trans-
genic mice demonstrated degeneration of ChAT-
immunoreactive fibres in the environment of AR
plaques and activated glial cells that suggests the
involvement of A and/or inflammation in the specific
degeneration of cholinergic synaptic structures (see
also Apelt et al., 2002).

One conceivable approach towards treating/prevent-
ing AD is through immunization against AB. In APP
transgenic mice, A} immunization reduced the A3 bur-
den. Also, in AD patients, A immunization reduced
the number of senile plaques and number of tau-
immunoreactive neuritis, and reduced expression of
SAPK/INK-P and p38-P, but did not alter the number
of NFTs in the cerebral cortex (Nicoll et al., 2003;
Ferrer et al., 2004). Pharmacogenomic studies predict
that the therapeutic response in AD is genotype-specif-
ic and that the expression of genes involved in the reg-
ulation of drug metabolism can affect efficacy and safe-
ty issues in pharmacotherapy. Constitutive genomics
may be determinant for onset of dementia in conjunc-
tion with environmental and cardiovascular factors
(e.g., Cacabelos et al., 2004). The accumulation of
novel approaches to models of AD pathology, pertain-
ing to efficient gene-delivery systems using lentiviral
vectors, offers much in bettering our understanding of
mechanisms in AD as well as in identifying additional
targets for AD treatments (Shaughnessy et al., 2004).

NEUROGENESIS AND THE ROLE
OF ANTIDEPRESSANT EFFECTS

Adult neurogenesis in the hippocampus has been docu-
mented in birds (Barnea and Nottebohm, 1994),
rodents (Altman and Das, 1965; Kuhn et al., 1996) and
primates, including humans (Eriksson ef al., 1998;
Gould et al., 1999; Kornack and Rakic, 1999). The pro-
duction of new neurons is influenced by a diversity of
environmental and behavioural conditions (McEwen,
1994; Cameron and McKay, 1998; Arvidsson et al.,
2001; Taupin and Gage, 2002; Brown et al., 2003). The
insertion of new neurons can modulate the capability of
the adult hippocampal network to handle the storage of
new memories or the clearance of old memories (Feng
et al., 2001; Shors et al., 2001). Linking neurogenesis
to neuronal activity may adapt the adult network both
to physiological demands and pathological insults
(Parent et al., 1997; Gould et al., 2000, 2001; Temple,
2001; Alvarez-Buylla et al., 2002). Neurogenesis may
be modulated by hormones, growth factors, neurotrans-
mitters as well as by environmental factors, and under
pathological conditions (Liu J et al., 1998; Aberg et al.,
2000; Van Praag et al., 2000, 2002). Furthermore, sev-
eral interventions that modulate hippocampal neuronal
activity levels affect also adult neurogenesis (Cameron
et al., 1995; Van Praag et al, 1999; Madsen et al.,
2000; Seaberg and Van Der Kooy, 2002). Nevertheless,
gene-environment interplay in neurogenesis poses a
number of methodological considerations (Cooper-
Kuhn and Kuhn, 2002; see also Kandel, 2001). In addi-
tion to in vivo studies, cells with stem cell properties
have been characterized extensively in vifro after isola-
tion from different brain regions and at different stages
of development (Reynolds and Weiss, 1996; Palmer et
al., 1999). These isolated cells have been shown to dif-
ferentiate into neurons under defined culture conditions
and to synapse with each other or with co-cultured neu-
rons (Mistry et al., 2002; Song et al., 2002a, b).

There is obvious environmental influence on our mood
in general and in the development and maintenance of
mood disorders and other psychiatric illnesses. As stat-
ed by Reid (2004) "...plastic brain mechanisms should
prove central to contemporary conceptualizations of
psychiatric disorder". Drevets et al. (1997) localized an
area of abnormally reduced activity and ~45% reduced
grey matter volume in the prefrontal cortex ventral to
the genu of the corpus callosum in both familial unipo-
lar and bipolar depressives. Atropy was also seen in the
left temporal cortex, including hippocampus, of people
with recurrent major depression (Sheline ef al., 1996;
Shah et al., 1998). The observations that pharmacologi-
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cal interventions may enhance neurogenesis are particu-
larly interesting, since antidepressant treatments are
efficacious (Malberg et al., 2000), in addition to elec-
troconvulsive therapy (e.g., Madsen et al., 2000). The
implication of neurogenesis in cognition has prompted
attempts to ascertain the role of the cholinergic system
on neurogenesis. Cooper-Kuhn ez al. (2004) have pro-
posed that the cholinergic system plays a survival-pro-
moting role for neuronal progenitors and immature neu-
rons within regions of adult neurogenesis, similar to the
effects observed previously during brain development
(cf- Mirescu et al., 2004).

Stress and the Hippocampus

Stress hormones are associated with damage to hip-
pocampal neurons (Reagan and McEwen, 1997;
Sapolsky, 2000). In rats housed in isolation for several
weeks, there was a reduction in the number of new neu-
rons in the dentage gyrus and corresponding impair-
ment of spatial learning; while a return to group hous-
ing reversed these deficits (Lu et al, 2003). Other
forms of stress mirror the effects of isolation housing
(Gould et al., 1997; 1998; Tanapat et al., 2001).

In people with post-traumatic stress disorder (PTSD)
there is a tendency for a decrease in hippocampal vol-
ume (Bremner, 2002), although there is controversy
about whether reduced hippocampal volume precedes
stress-induced PTSD; or is a consequence of PTSD.

Complicating the debate about genes and environ-
ment is the issue of epigenetic inheritance. For exam-
ple, female rodents with high licking-and-grooming
surrogate mothers themselves become high licking-
and-grooming mothers with low anxiety offspring
regardless of whether their biological mother was low
or high licking-and-grooming (Francis et al., 1999; see
Gross and Hen, 2004). However, offspring of high lick-
ing-and-grooming mothers raised by low licking-and-
grooming mothers did not have high anxiety (Anisman
etal., 1998; Liu D et al., 2000).

Although antidepressants produce their pharmaco-
logical effect after the first dose (i.e., block of serotonin
reuptake by selective serotonin reuptake-inhibitors,
SSRIs; enhanced serotonin reuptake after tianeptine;
selective block of norepinephrine reuptake; block of
norepinephrine and serotonin reuptake by tricyclic
antidepressants; inhibition of monoamine oxidase
[MAO] by MAO-inhibitors), there is ordinarily a delay
of at least 10-14 days before the onset of antidepressant
action. This time delay indicates that there is probably
some reorganization occurring in brain, and this is now
thought to be due to increased neurogenesis - an effect
seemingly produced by all antidepressants, prominent-

ly in the hippocampus (Malberg et al., 2000; Brody et
al., 2001; Czeh et al., 2001; Martin-Aparacio et al.,
2001; Santarelli et al., 2003). Similarly, lithium
increased grey matter volume in the brain of bipolar
patients (Moore et al., 2000).

Gene-environment interactions can take several dif-
ferent forms. In boys with a low activity allele of the
MAO-A gene, maltreatment was a risk factor for adult
anti-social behavior, while maltreatment was not a risk
for later anti-social behavior in boys with the high
activity allele (Caspi et al., 2002). Also, genetics may
indirectly influence environmental situations. For
example, a person with a particular genetic make-up
may choose a stressful social or work environment
known to increase the risk for major depression
(Kendler and Karkowski-Shuman, 1997). Kendler et
al. (2001) estimate that up to 20% of tenetic influence
over psychiatric outcome could be by outside-the-skin
mechanisms vs the within-the-skin route.

CONCLUSIONS

The interplay of genetic inheritance and environmental
influence is becoming evermore complex. In many
experimental paradigms it seems to be increasingly dif-
ficult to separate a genetic influence from an environ-
mental influence on development. Some environmental
exposures (i.e., a priming process) produce life-long
outcomes with there being virtually no 'biological foot-
print' (i.e., anatomical or identifiable biochemical
change). And the recognition of neurogenesis in adult
brain further complicates all of these elements with
facets of new learning and memory - to add to the
uncertainty of gene-environment interplays. Exacting
studies, carefully controlling the above elements, are
needed to resolve the many complexities in addressing
the most important components that influence neuronal
processes leading to (or preventing) neuronal apoptosis
and other biological events attending neurodegenera-
tive or psychiatric disorders.
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