

Gene-Environment Interplay in Alcoholism and Other Substance Abuse Disorders: Expressions of Heritability and Factors Influencing Vulnerabilities

TOMAS PALOMO^a, R.M. KOSTRZEWA^b, R.J. BENINGER^c, AND T. ARCHER^{d,*}

^a*Servicio Psiquiátrico, Hospital Universitario 12 de Octubre, Avda. de Córdoba s/n, 28041 Madrid, Spain;* ^b*Dept. Pharmacology, Quillen College of Medicine, East Tennessee State Univ., Johnson City, TN 37614, USA;* ^c*Depts. Psychology and Psychiatry, Queen's Univ., Kingston ON K7L 3N6, Canada.* ^d*Dept. Psychology, University of Göteborg, Box 500, SE-40530 Göteborg, Sweden and University of Kalmar, Kalmar, Sweden.*

(Received 21 September 2004; Revised 10 October 2004; In final form 10 October 2004)

Factors that confer predisposition and vulnerability for alcoholism and other substance abuse disorders may be described usefully within the gene-environment interplay framework. Thus, it is postulated that heritability provides a major contribution not only to alcohol but also to other substances of abuse. Studies of evoked potential amplitude reduction have provided a highly suitable and testable method for the assessment of both environmentally-determined and heritable characteristics pertaining to substance use and dependence. The different personal attributes that may co-exist with parental influence or exist in a shared, monozygotic relationship contribute to the final expression of addiction. In this connection, it appears that personality disorders are highly prevalent co-morbid conditions among addicted individuals, and, this co-morbidity is likely to be accounted for by multiple complex etiological relationships, not least in adolescent individuals. Co-morbidity associated with deficient executive functioning may be observed too in alcohol-related aggressiveness and crimes of violence. The successful intervention into alcohol dependence and craving brought about by baclofen in both human and animal studies elucidates glutamatergic mechanisms in alcoholism whereas the role of the dopamine transporter, in conjunction with both the noradrenergic and serotonergic transporters, are implicated in cocaine dependence and craving. The role of the cannabinoids in ontogeny through an influence upon the expression of key genes for the development of neurotransmitter systems must be considered. Finally, the particular form of behaviour/characteristic outcome due to childhood cir-

cumstance may lie with biological, gene-based determinants, for example individual characteristics of monoamine oxidase (MAO) activity levels, thereby rendering simple predictive measures both redundant and misguiding.

Keywords: Gene; Environment; Interplay; Alcohol; Cocaine; MDMA; Personal attributes; P300 amplitude; Heritability; Self-control; Impulsivity; Antisocial personality; Executive functioning; Neurochemical substrates; Cannabinoids; Longitudinal influences; Vulnerability

INTRODUCTION

The urgency to characterise the genetic and environmental factors, not least in the necessity for prevention and intervention programs, has been of major importance for examinations of risk assessments for alcoholism and other substance abuse disorders (*cf.*, Bohman *et al.*, 1987; Johnson *et al.*, 1996). The search for genetic influences upon substance disorders has produced a flora of investigations implicating both specificity and generality of gene action (*e.g.*, van den Bree *et al.*, 1998a,b; Vanyukov and Tarter, 2000; Enoch and Goldman, 2001). For example, one major focus in the search for the etiology of alcoholism is centred on the effects of specific genes, *e.g.*, as implied by the gene action related to the metabolism of alcohol in Asian populations (Li, 2000). To some extent the study of specific phenotypes, *i.e.*, a defining substrate for the disorder, has proven effective for an elucidation of some aspects of causation. Thus, behavioural traits may describe phenotypes (these may have several designations, *e.g.*, 'endophenotypes', 'intermediate' or

*Corresponding author. E-mail: Trevor.archer@psy.gu.se

'alternative' phenotypes) that may precede disorder onset as early expressions of the genetic predisposition for alcoholism and/or other substance abuse. Phenotypes may refer to a multitude of facets pertaining to genetic 'make-up', like severity or course (chronic, heavy drug use, binge-drinking, or multiple drug arrests), symptom profiles (e.g., tolerance, driving under the influence, cross-tolerance) and other traits, such as aspects of personality like impulsivity and lack of self-control. The study of quantitative phenotypes has thereby offered a means for gene identification (Boomsma and Dolan, 1998; Williams and Blangero, 1999; Williams *et al.*, 1999; Arya *et al.*, 2001). Albeit considerable, yet the genetic influence in alcoholism has not solely been the focus of clinical study but rather the role of gene-environment interplay has been a matter of major concern for over half-a-century (e.g., Amark, 1951).

In the vein of genetic and biological liability, Heilig and Sommer (2004) have postulated that genetic factors contribute to alcohol dependence through two main categories of mechanisms: on the one hand, the 50%-60% heritability, observed in the disorder, has been presumed to be conferred by polymorphic variants, encoding functionally-altered proteins, or leading to differential transcriptional activity (see discussion on functional phenotypes by Le Moal *et al.*, 2004), and, on the other hand, the long-term changes during the process of dependence-addiction development may likely be accompanied and encoded by persistent changes in gene expression (Ilveskoski *et al.*, 2001; Mayfield *et al.*, 2002; Tabakoff *et al.*, 2003; Arlinde *et al.*, 2004). By this notion, genetic and environmental factors interact at the level of the transcriptome. Heilig and Sommer (2004) have applied differential display and Affymetrix oligonucleotide gene arrays to models of genetic susceptibility and alcohol-induced neuroadaptation. Several lines of observations by Heilig *et al.* (e.g., Heilig *et al.*, 1989; 1994; Wahlestedt *et al.*, 1992; Thiele *et al.*, 1998; Heilig and Thorsell, 2002; Thorsell *et al.*, 2002) have found a neuromodulatory function of neuropeptide Y in the regulation of emotional behaviour and ethanol intake; in humans associations between a polymorphic allele of the preproNPY gene (Kauhanen *et al.*, 2000; Zhu *et al.*, 2003) and the role of the neuropeptide in alcohol self-administration (Slawecki *et al.*, 2000; Badia-Elder *et al.*, 2001; Caberlotto *et al.*, 2001; Kelley *et al.*, 2001) are discussed. These studies depict an 'outsider' in the alcoholism-substance abuse-personality disorder configuration, discussed below, and must contribute to the equation underlying disease vulnerability.

A different strategy for investigating genetic susceptibility has been offered by the focus upon the TaqIAI allele of the DA receptor gene D₂ (*DRD2*) that has been associated with alcoholism and addictive behaviour (Blum *et al.*, 1990; Cook *et al.*, 1992; Comings *et al.*, 1994; 1996; Hill *et al.*, 1998; Noble, 2000) as well as problems of personality (Ponce *et al.*, 2003). The examination of dopaminergic genes in alcoholism is an essential ingredient of gene-environment interplay in the disorder and may elucidate the identification of genetic subgroups among afflicted individuals (Cloninger *et al.*, 1988; Cloninger, 1991; Babor *et al.*, 1992; Cook *et al.*, 1992). Ponce *et al.* (2004) observed that the presence of the TaqIAI allele in the *DRD2* genotype in Spanish alcoholics is associated with higher concentrations of homovanillic acid (HVA) in urine when compared with patients homozygous for the *TaqIAI* allele. The sample of 142 Spanish male alcoholic patients was divided into two groups on the basis of the presence/absence of the A1 allele in their genotype. Urine samples, following HPLC analysis, revealed significant differences of HVA concentrations between the two patient groups, implying that this polymorphism may be related to the variance of urine HVA levels, which seems consistent with other evidence associating the *TaqIAI* allele with other dopaminergic characteristics (Gabbay *et al.*, 1996; Miyake *et al.*, 1999).

ALCOHOL-INDUCED VIOLENCE AND EXECUTIVE FUNCTION

The implications of alcoholism are far-reaching: interpersonal aggression is facilitated by the drug (Bushman and Cooper, 1990; Chermack and Giancola, 1997), with ever-increasing crime statistics (e.g., Collins and Messerschmidt, 1993; Spunt *et al.*, 1995a) and an alarming degree of ubiquity over gender (Spunt *et al.*, 1990; Buss *et al.*, 1995), age (Gleason-Milgram, 1993; Dembo *et al.*, 1997), ethnic/racial background (Valdez *et al.*, 1995) and geography (Murdoch *et al.*, 1990). Alcohol facilitation of the expressions of aggression include, for example: aggressive threat (Choquet *et al.*, 1991), verbal aggression (Babor *et al.*, 1983), marital and family violence (Leonard and Jacob, 1988; Leonard and Senchak, 1996), sexual aggression (Parks *et al.*, 1996), child abuse (Kaufman-Kantor and Strauss, 1990), use of handguns (Brent *et al.*, 1987), murder (Klatsky and Armstrong, 1993) and suicide (Brent *et al.*, 1987). Recent notions on the acute and long-term effects of alcohol pertain to its disruptive influence upon 'executive functioning', not only with

regard to the expression of aggression but also regarding other aspects of function and personality (Hull and Bond, 1986; Bushman, 1993; 1997; Seto and Barbaree, 1995; Giancola *et al.*, 1996; Ito *et al.*, 1996). For example, Pihl *et al.* (1993) imply that acute alcohol disturbs prefrontal cortex-hippocampal function, through its anxiolytic effects, eliminating signals of punishment thereby contributing to behavioural disinhibition, concurrent with enhanced aggressive responses through the transient psychomotor effects of the drug and increased sensitivity to physical pain signals. The prefrontal cortex subserves a diversity of cognitive, executive functions, including: selective attention (in conjunction with the anterior cingulated cortex (see Palomo *et al.*, 2004), as well as the amygdala and hypothalamus (Damasio and Anderson, 1993), in the context of emotional behaviour, bearing in mind the 'frustration' construct (Archer, 1988), strategic planning, hypothesis generation, abstract reasoning, temporal ordering and the sequencing and organisation of information in working memory (Milner and Petries, 1984; Stuss and Benson, 1984; Kimberg and Farah, 1993; Lezak, 1995). Executive function may be described as a cognitive propensity to carry out effective planning, initiation and regulation of goal-directed behaviour (see also Shallice, 1982; Benson, 1993), and is involved in the expression of aggressive behaviour (Moffitt, 1993; Giancola, 1995; Morgan and Lilienfeld, 2000), particularly alcohol-related aggression (Hoaken *et al.*, 1998). Poorer performance on neurophysiological estimates of executive functioning, compared with nonexecutive functioning, is observed in individuals presenting symptoms characterised by aggression, such as antisocial personality disorder (Gorenstein, 1987; Malloy *et al.*, 1990), psychopathy (Smith S *et al.*, 1992; Lapierre *et al.*, 1995), conduct disorder (Lueger and Gill, 1990), delinquency (Yedull *et al.*, 1982), attention deficit hyperactivity disorder (Benson, 1991; Barkey, 1997) and inattention-overactivity problems (McBurnett *et al.*, 1993), implicating regional glucose metabolism (Volkow and Tancredi, 1987; Volkow *et al.*, 1990; 1995a,b). It is interesting to note that psychiatric patients arrested for violent crimes, but not those arrested for non-violent crimes showed executive functioning deficits (Krakowski *et al.*, 1997). Alcohol exerts profound effects upon executive function (Oscar-Berman and Hutner, 1993; Evert and Oscar-Berman, 1995), disrupting attention, planning, judgement, organisation, cognitive flexibility and appraisal, behavioural inhibition, abstract reasoning, set shifting and working memory (Zeichner *et al.*, 1982; Peterson *et al.*, 1990; Lyvers and Maltzman, 1991; Arbuckle *et al.*,

al., 1994; Post *et al.*, 1996; Mulvihill *et al.*, 1997). Giancola (2000) has proposed a framework of executive functioning mediating alcohol-related aggression that merges with notions of gene-environment interplay assembling a phenotype beyond acute, environmental factors to long-term genetic susceptibility. Thus, it is proposed that (a) executive functioning mediates the alcohol-aggression relation whereby acute alcohol disrupts executive functioning which in turn facilitates expressions of aggression, (b) individuals with low levels of executive functioning (see below) lack the moderating influence of executive functioning upon the alcohol-aggression relation are facilitated by alcohol in their expression of aggressive behaviour. Taking into account the long-term effects of alcohol on glutamate signalling in brain development (Guerri *et al.*, 2001; Guerri, 2002; Olney *et al.*, 2002a,b), the major liability leading to loss of normal executive functioning becomes progressively more pronounced (e.g., Moghaddam, 2003; 2004; Fredriksson and Archer, 2004).

PREDISPOSITION, HERITABILITY AND P300 AMPLITUDE REDUCTION

Studies of P300 event-related potential amplitude have documented a vast array of evidence implicating the unique gene-environment interplay in the vulnerability for substance use disorders. In this context, it was reported originally by Begleiter *et al.* (1984) that the pre-adolescent sons of male alcoholics showed reduced P3 amplitude in a visual oddball task set up to analyse event-related potentials. This reduced P3 amplitude reduction is evidenced in alcoholics themselves (e.g., Poresz *et al.*, 1987; Glenn *et al.*, 1996; Prabhu *et al.*, 2001; Cohen *et al.*, 2002). Polich *et al.* (1994) performed a meta-analysis of 30 studies on the offspring of alcoholics; it was shown the reduction in P3 amplitude was more marked for visual tasks, complex stimuli, and younger high-risk children. The degree of heritability of event-related brain potentials is evidenced not least of all in families with a history of alcoholism (Almasy *et al.*, 1999; 2001), and further exemplified by the association between parental alcoholism and the diminished P3 amplitude outcome was underlined in a large number of subsequent studies (e.g., Cohen *et al.*, 1993; Hill *et al.*, 1995; 1999; Ramchandra *et al.*, 1996; Ramsey and Finn, 1997; van der Stelt *et al.*, 1998; van der Stelt, 1999; Hada *et al.*, 2001). Thus, it has been suggested that the P3 amplitude reduction may serve as an endophenotype providing a laboratory measure of genetic risk for development of alcoholism (Iacono,

1998; Begleiter and Porjesz, 1999). Applying the Minnesota Twin Family Study Cohorts, described as an ongoing, state-wide study of pre-adolescent and late adolescent twins and their parents (*cf.*, Iacono *et al.*, 1999; see also Iacono *et al.*, 2002), a review of the evidence from a population-based, longitudinal investigation of twin youth has been carried out by Iacono *et al.* (2003). Their findings demonstrated also that a particular assembly of attributes associated with behavioural disinhibition (see also Barkley *et al.*, 1992; Barkley, 1997) was distinguished in being familial, heritable and interrelated. In this regard, it is necessary to consider the contributions of gene-environment interplay to expressions of behavioural disinhibition to substance disorders and problems of personality (Young *et al.*, 2000), not least regarding the genetic analysis of alcoholism and personality characteristics (Czerwinski *et al.*, 1999). The presence of P3 amplitude reduction in individuals indicated several deviations from normal behaviour and provided an index of genetic vulnerability for 'externalizing spectrum' including: (1) familial risk for substance use and antisocial personality disorders, (2) diagnoses of childhood disruptive disorders and substance use disorders, (3) the early onset of 'under-socialized' behaviour, and (4) quantitative phenotypes related to externalising problems, *e.g.*, alcohol and other substance abuse, criminal behaviour, and aggression.

With reference to the alcohol/abused substance association to aggressiveness, this reduced/attenuated P300 amplitude is observed too in male prison inmates with histories of violent behaviour (Drake *et al.*, 1988; Barratt *et al.*, 1997), and in adolescent psychiatric patients with elevated levels of verbal and physical aggression (Harmon-Jones *et al.*, 1997). Further, individuals with antisocial personality disorder showed reduced P300 amplitude selective to the frontal scalp region (Hesselbrock *et al.*, 1993; Bauer *et al.*, 1994; O'Connor *et al.*, 1994; Bauer, 1997). It is of interest to note that (i) reduced frontal P300 amplitude is associated with poor executive, but not nonexecutive, functioning, and (ii) the prefrontal cortex is one area considered to generate P300 amplitude (Ruchkin *et al.*, 1990; Yamaguchi and Knight, 1991; Johnson, 1993; Alexander *et al.*, 1995). These studies taken together with those relating alcohol-induced aggression to executive functioning (above) and others implicating an intimate and complex relationship between genetic vulnerability in personality problems and substance abuse imply an intricate framework within which alcoholism and other substance abuse delve deep into the underpinnings of gene-environment interplay.

Much evidence for heritability for problems associated with substance abuse may be derived from a number of other twin studies (*e.g.*, Grove *et al.*, 1990; Kendler *et al.*, 1992; Scherrer *et al.*, 1996; Maes *et al.*, 1999; Prescott *et al.*, 1999), besides those observed from the Minnesota Twin Family Study. For example, Kendler *et al.* (1999a,b) obtained substantial genetic influences on the initiation of substance use and additional influences on the transition to substance abuse in a female sample. These findings were replicated in a separate study of male twins (Kendler *et al.*, 2000) wherein the degree of heritability was found to be 35% for any drug use and 83% for heavy drug use (but see also Prescott and Kendler, 1999). The common genetic variation between drug and alcohol abuse/dependence is clearly a recurring theme. Nevertheless, twin study results are neither simple, straightforward or amenable to easy interpretations: in a twin study of Vietnam-era service (Tsuang *et al.*, 1999), although genetic influences for extent of marijuana use were obtained, heritability decreased with heavier use and the transition from abuse to dependence, and genetic influences were non-significant for other drugs except for amphetamines and cocaine. In agreement with the major consensus from twin studies, Kendler and Prescott (1998) described significant genetic influences upon heavier cannabis use and the environmental implications for any debut into cannabis usage. Nevertheless, the salient distinctions and specificity of genetic and environmental risk factors in addiction are evident also from these studies (*cf.* Kendler *et al.*, 2003). Thus, the all-important interplay between gene and environment may not be reiterated often enough (*cf.*, Cadoret, 1992; Cadoret *et al.*, 1986; 1995; 1996; Heath *et al.*, 1997), as appears relevant in a constellation of other neuropsychiatric disorders whether with drug co-morbidity (Miles *et al.*, 2002) or without (Cadoret *et al.*, 1983; 1985). In clinical terms, alcoholism is a chronically relapsing disorder, and over the life-span of alcoholics, who may/may not intermittently display a variety of personality and/or character defects, cycles of ethanol/other substance intoxication may alternate periodically with intervals of abstinence, with one likely consequence that a withdrawal syndrome whose severity is correlated positively with the incidence of intoxication and withdrawal cycles is to be observed (Brown *et al.*, 1988).

PERSONAL ATTRIBUTES PREDICTIVE FOR SUBSTANCE USE/ABUSE

In view of incremental budgets required to stem the tide of social and clinical problems, much effort has

been invested upon the identification of factors associated with individuals' vulnerability and eventual predisposition towards substance abuse. Although the contribution of personality factors has been considered, both intuitively and explicitly, the last half-dozen years have reinforced the notion that personal characteristics interplay markedly in the eventual risk for sooner or later substance abuse (Galen *et al.*, 2000; Helmus *et al.*, 2001; Koehl *et al.*, 2002; Palomo *et al.*, 2002; Wolff and Wolff, 2002). For example, Corr and Kumari (2000) studying individual differences in self-reported mood following either 5 mg or 10 mg D-amphetamine challenge tested the modifying role of Eysenck's psychoticism, Cloninger's novelty-seeking and Depue and Collin's extraversion in a double-blind study. They found significant psychoticism x D-amphetamine interactions for both drug doses, expressed by increased energetic arousal and hedonic tone but reduced tense arousal in low psychoticism individuals but *vice versa* in high psychoticism individuals, whereas neither novelty-seeking nor extraversion modified the effects of D-amphetamine. Two implications (although there are several others) may be relevant to present purposes: (1) routine inclusion of personality measures is integral to psychopharmacological studies, and (2) affective state appears to modulate the eventual expression of the rewarding entity (*cf.*, Palomo *et al.*, 2004). In this connection, it appears that personality disorders are highly prevalent co-morbid conditions among addicted individuals, and, this co-morbidity is likely to be accounted for by multiple complex etiological relationships (Skinstad and Swain, 2001; Verhuel, 2001; Conway *et al.*, 2002; Flory *et al.*, 2002), not least in adolescent individuals (Chabrol and Armitage, 2002). Much effort has been invested too in the enterprise involving prediction of risk for future substance abuse from assessment of personality characteristics (Crowley *et al.*, 1998; Comeau *et al.*, 2001; Conway *et al.*, 2002; Young *et al.*, 2002; Sussman *et al.*, 2003). Recently, Langbehn *et al.* (2003) using survival analysis methodology, confirmed that risk for substance abuse and substance-related problems was increased, not only in comparison with adoptees without known biological risk but also adoptees with biological risk for only one disorder, when combined when antisocial personality and substance abuse occur in the same parent. The authors imply that the biological associations presented in the study are consistent with generalization to other substances of an alcoholism phenotype similar to Cloninger's Type II or Babor's Type B (see below); this implication of *dual* gene-environment interactions is central to any consideration of drug-related disorders.

The notion of 'self-control' has been considered periodically with respect to the involvement of personality in substance abuse disorders. Lack of self-control is suggested to be central to individuals' drug involvement (Gottfredson and Hirschi, 1990; Jackson *et al.*, 2000). Furthermore, lack of self-control among juveniles has been found to be a significant predictor for serious alcoholism, tobacco use and other substance usage, as well as a cluster of other felonies (*e.g.*, Wills *et al.*, 1995; 1999; 2000; Longshore *et al.*, 1996; Longshore, 1998; Griffen *et al.*, 2000; Sher *et al.*, 2000). In this regard, Sussman *et al.* (2003; but see also Sussman and Dent, 1996; Sussman *et al.*, 1997; 1999; 2000; 2001) have found that the most consistent concurrent predictors of substance use were male gender, antisocial personality disorder and social self-control. Their results have identified social self-control, whereby lack of self-control refers to the inability to consider the consequences of one's action before acting, as a unique concurrent predictor for substance abuse. Associated with the issue of a self-control deficient personality in substance abuse, is the prevalence of pathological gambling in individuals with both alcohol and other drug problems (*e.g.*, Lesieur *et al.*, 1986; Castellani and Rugle, 1995; Feigelman *et al.*, 1995; Spunt *et al.*, 1995; Castellani *et al.*, 1996; Daghestani *et al.*, 1996; McCormick *et al.*, 1997). For instance, Steinberg *et al.* (1992) studied gambling problems in 298 cocaine abusers seeking treatment that evidenced a 15% prevalence rate for pathological gambling. On the other hand, up to 50% of pathological gamblers present a history of drug or alcohol use disorders (Ramirez *et al.*, 1983). The personality trait, impulsivity, is associated too with substance use and abuse, as shown by both longitudinal (White *et al.*, 1994; Dawes *et al.*, 1997) and cross-sectional (Jaffe and Archer, 1987) studies. Thus, a multitude of studies on patient populations have indicated that substance-abusing individuals score higher than controls on personality inventories of impulsivity (Eisen *et al.*, 1992; Chalmers *et al.*, 1993; Cookson, 1994; Allen *et al.*, 1998). Certainly, the implications of impulsivity for numerous aspects of behaviour are not to be neglected (Eysenck and Eysenck, 1978; Eysenck and McGurk, 1980; Eysenck *et al.*, 1985). Besides its association with substance abuse, impulsivity may be related to several other problem areas including criminal activity, fire-setting and repeated aggression (Stanford and Barratt, 1992) although levels of impulsivity in pathological gambling appear to vary (Allcock and Grace, 1988; Carlton and Manowitz, 1994; Blaszczynski *et al.*, 1997; Steel and Blaszczynski, 1998), as confirmed specifically in a

recent study by Petry (2001).

There is now an extensive documentation covering the epidemiological and functional background of children born to and brought up within a parental environment marked by alcoholism or other substance disorders (e.g., Windle and Searles, 1990; Chassin *et al.*, 1993; US Department of Health and Human Services, 1994; Clark *et al.*, 1997; Windle, 1997; Johnson and Leff, 1999; Kumpfer, 1999; McGue *et al.*, 2001). For example, parental substance abuse may take the form of neurochemical metabolite alterations in the young male offspring (Gabel *et al.*, 1995). The risk factor inherent to this environment is considerable since these children are four to six times more likely to develop alcohol problems during their lifetimes (Russell, 1990), show an over-representation of both internalising (e.g., anxiety, depression) and externalising (e.g., conduct disorders, alcohol use, substance use) disorders (Seilhamer and Jacob, 1990), as well as risk for fetal alcohol syndrome (Larkby and Day, 1997) and inadequate parenting plus negative parent-child interactions (Jacob and Johnson, 1997). Fals-Stewart *et al.* (2003) have identified several predictors for these destructive interactions including: the frequency of male-to-female physical aggression between the parents, the frequency of the father's substance use/abuse during the previous year, diagnosis of antisocial personality disorder of the fathers, and mother's level of psychological distress. There appears to be also a three-fold higher risk for alcohol abuse/dependence in the children of alcoholics (Schuckit, 1998; but see also Clark *et al.*, 2004), and clinical syndromes expressed by conduct/oppositional problems, abstract reasoning impairments, memory and goal-directed behavioural deficits, problems in personal and social functioning, and excessive aggressiveness (Zucker and Fitzgerald, 1991; Noll *et al.*, 1992; Reich *et al.*, 1993; Pihl and Bruce, 1995; Carbonneau *et al.*, 1998). Finally, several longitudinal studies underline the co-morbid incidence of dysfunctional behavioural traits and substance abuse disorders (Kopstein *et al.*, 2001; Adalbjarnardottir and Rafnsson, 2002; Gorman and Derzon, 2002).

Certain twin studies imply a partially shared heritability, somewhat in the form of a 'clustering' of traits, for combinations of personality disorders and conduct disorder (Slutske *et al.*, 1998; van den Bree *et al.*, 1998b; True *et al.*, 1999; Jang *et al.*, 2000). Familial clustering of these traits may offer several lines of evidence predisposing genetic and environmental factors, including: (a) high rates of character disorder in the first degree relatives of alcoholics (Amark, 1951; Bleular, 1955), (b) a higher incidence of familial alco-

holism in military men with antisocial behaviour and more severe alcoholism (Frances *et al.*, 1980), (c) a higher incidence of aggressiveness in the fathers of criminal alcoholics (McCord, 1981), (d) a younger age of onset and greater legal problems in familial alcoholism, particularly if both parents were alcoholics (McKenna and Pickens, 1981; Schuckit, 1984), (e) a family history of alcoholism, in males, was associated with earlier onset, greater severity, and antisocial behaviour in a large sample of hospitalised alcoholics (Latcham, 1985), (f) an A/B typology (Babor *et al.*, 1992), with type B resembling strongly the Type II alcohol of Cloninger (*cf.*, Cloninger *et al.*, 1981; Cloninger, 1987; Schuckit and Irwin, 1989), as well as the further clustering evidence reinforcing personality-substance abuse interactions (Litt *et al.*, 1992). For example, in families with a substance-abusing father, there was a significant correlation between parental disruptive behaviour (whether as child or adult) and similar behaviour in 10-12 year-old sons (Majumder *et al.*, 1998). In the context of these notions of 'cluster' and in conjunction with thread of impulsivity (see above, it ought to be noted that several of these problems may be associated with a diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) or childhood psychopathy, whether drugs involved are alcohol or other compounds (West and Prinz, 1987; Mannuzza *et al.*, 1993; Biederman *et al.*, 1995; Levin and Kleber, 1995; Milberger *et al.*, 1997; Disney *et al.*, 1999). Thus, the co-morbidity of substance use disorders with both hyperactivity and aggressiveness syndromes has been discussed for over two decades (e.g., Loney *et al.*, 1980). Furthermore, the co-morbidity of personality disorders (and other 'mental' disorders) with alcohol and other substance abuse must not be overlooked (Regier *et al.*, 1990; Tyrer *et al.*, 1997; Nadeau *et al.*, 1999; Janowsky *et al.*, 2001; Verheul, 2001). Nevertheless, the issue of contributory parental disorders other than substance abuse disorders or parental socio-economic status and general life functions was addressed by Schuckit *et al.* (2000) who found that once familial antisocial disorders and socio-economic status was controlled for, a family history of alcoholism did not relate to childhood externalising disorders.

PERSONALITY, HPA AXIS AND STRESS IN SUBSTANCE ABUSE DISORDERS

The complex and multiple interactions of personality attributes with the various dimensions of hypothalamic-pituitary-adrenal (HPA) axis mobilization appear to

orchestrate the eventual behavioural outcome of substance use in a variety of ways, depending on the particular class of substance administered (Goeders, 2002; Le Moal *et al.*, 2004), and in the final analysis offer critical determinants of vulnerability for addictive behaviour (Majewska, 2002). The involvement of the HPA axis in alcoholism has been established, whereas in the present case interest is focussed on this axis in users of the drug methylenedioxymethamphetamine (MDMA, or "ecstasy"), not only for the serotonergic implications (*cf.*, Ricaurte *et al.*, 2002; Van Praag, 2002) but the "in-drug" status of the compound. Thus, in laboratory studies, MDMA users showed high levels of both cortisol and adrenocorticotropic hormone (ACTH) but low levels of experimental aggressiveness compared to normal control subjects (Gerra *et al.*, 2001). The compound is known to elevate both cortisol and ACTH in humans (Grob *et al.*, 1996; Mas *et al.*, 1999). As noted above, HPA axis hyperactivity and reduced reactivity to stressful events in conjunction with brain serotonergic and other neurotransmitter imbalance (Gerra *et al.*, 1998; 2000; Kish *et al.*, 2000; Fox *et al.*, 2001; Mayerhofer *et al.*, 2001; Parrott *et al.*, 2001; Parrott, 2002) presents a recognizable formula for depressive states (Drevets *et al.*, 1997; Rao *et al.*, 1999). DA functioning may be impaired also in MDMA users (Gerra *et al.*, 2002), since drugs enhancing DA neurotransmission mobilize the HPA axis (Mokrani *et al.*, 1995). Recently, Gerra *et al.* (2003) examined the level of HPA axis mobilization, under both basal and stressful conditions, growth hormone responses to bromocriptine, the DA D₂ receptor agonist, intervention, and psychometric analysis of personality variables. They found significantly higher basal levels of cortisol and ACTH, accompanied by blunted reactivity, *i.e.*, lower levels of cortisol and ACTH, under stress, in the MDMA users. DA D₂ receptor sensitivity, as assessed by growth hormone response to bromocriptine, was reduced also in the MDMA users. The HPA axis reactivity correlated directly with growth hormone responsiveness but inversely with the psychometric measures of aggressiveness and 'novelty-seeking'. Their results appear to present a fateful pattern: unhealthy over-mobilization of a basal HPA axis (accompanied by a plethora of neurodegenerative consequences for highly sensitive brain regions that modulate its function) is exacerbated by suppressed reactivity under conditions where the axis ought to be activated, blunted DA-system engagement, and personality-driven behavioural outcomes of a maladaptive nature. Tragically, this pattern must constitute an equation with self-destructiveness as its product.

MONOAMINE TRANSPORTER MECHANISMS IN BEHAVIOURAL SENSITIVITY

Neurotransmitter reuptake mechanisms remain basal to any consideration of the mechanisms involved in the psychostimulant and rewarding properties of cocaine, since the drug potentiates the neurotransmission of DA, noradrenaline (NA) and serotonin (5-HT) at synaptic terminals (*e.g.*, Ross and Renyi, 1969; Heikkila *et al.*, 1975; Hadfield *et al.*, 1980). There exists a strong relationship between binding to the DA transporter and the functional effects of the drug (Kula and Baldessarini, 1991; Boulay *et al.*, 1996; Sora *et al.*, 2001). Izenwasser (2004) describes a wide range of studies, using chronic drug administration procedures that focus upon the role of the DA transporter in cocaine abuse. These studies, that administered either cocaine or selective inhibitors of the DA transporter (*e.g.*, GBR 12909 or RTI-117), NA transporter (*e.g.*, desipramine), or 5-HT transporter (*e.g.*, fluoxetine), have produced evidence that although selective DA uptake inhibitors have the propensity to induce sensitisation to cocaine, the long-lasting sensitised response to a cocaine challenge, observed in cocaine-pretreated rats, may be due to cocaine action on a neurotransmitter system other than, or in addition to DA (see Kalivas *et al.*, 1988; Izenwasser and Cox, 1992; Izenwasser *et al.*, 1999; Collins and Izenwasser, 2002). Behavioural sensitisation is induced by intermittent chronic (continuous) administration of the drug, providing a progressive enhancement over the length of the administration and is expressed when the animals receive a drug challenge (cocaine) even long after withdrawal from the chronic administration (King *et al.*, 1992; Sorg and Ulibarri, 1995; Kalivas and Duffy, 1998; Partridge and Schenk, 1999). It appears that although DA remains one critical component for behavioural and addictive properties of cocaine the contributions of other neurochemical substrates are to be attended. In this regard, it may be worthwhile to consider the central role of glutamate in processes that underlie the development and maintainance of addictive behaviours, *e.g.*, reinforcement, sensitization, habit learning, contextual learning, craving and relapse. It has been shown that many of the actions of glutamate achieve their essential significance through a stimulatory interaction with dopaminergic systems, and certain glutamatergic mechanisms contribute to addictive behaviours independent of dopaminergic mechanisms (for review, see Tzschentke and Schmidt, 2003).

As described by Kalivas (2004) and others (Vanderschuren and Kalivas, 2000) and in accordance

with different avenues of evidence indicated above, cocaine addiction too appears to be the result of alterations in brain functioning due to gene-environment interplay, reflected by genetic vulnerability and environment circumstance, modulated by pharmacological status. The reduction in Homer protein, encoded by three genes (Homer 1-3) and involved in aspects of glutamate signalling in the nucleus is one change effected by repeated cocaine administration on glutamate neurotransmission (e.g., Swanson *et al.*, 2001). Kalivas *et al.* (2004) have presented the behavioural and neurochemical effects of *Homer2* deletion in mice; these alterations are compared also with the effects of cocaine administration to rats. In a series of studies, Kalivas *et al.* (Kalivas and Duffy, 1993; Pierce *et al.*, 1996; Vanderschuren and Kalivas, 2000; Baker *et al.*, 2003; McFarland *et al.*, 2003) and others (Horger *et al.*, 1990; Schippenberg and Heidbreder, 1995; Heidbreder *et al.*, 1996; Reid and Berger, 1996) have compared the effects of *Homer2* gene deletion in mice (here they compared wild-type with *Homer2* knock-out mice on several measures related to glutamate transmission in the nucleus accumbens and cocaine-induced behavioural changes) with withdrawal from repeated cocaine administration in rats on cocaine-induced behaviour and neurochemistry in the nucleus accumbens. It was shown that, in each case, *i.e.* *Homer2* vs wild-type and repeated cocaine vs saline, locomotor activity was increased, conditioned reward was increased, acquisition of self-administration was increased, and cocaine-induced glutamate was increased, whereas basal glutamate was decreased, and basal DA showed no difference. For cocaine-induced DA there was no difference for *Homer2* vs wild-type whereas for repeated cocaine vs saline there was an increase. An essential message from these studies appears to be: *Homer2* gene deletion in mice appears to give rise to a phenotype that is remarkably similar to the phenotype produced by repeated cocaine administration in rats.

Fernandez-Ruiz *et al.* (2004) have described how the cannabinoids, through a diversity of mechanisms that influence the neurodevelopment of brain structure and function, affect the ontogeny of various neurotransmitter systems (Fernandez-Ruiz *et al.*, 1999; Ramos *et al.*, 2002; Mato *et al.*, 2003), leading to changes in different behavioural patterns. They present a number of lines of evidence implicating the role of the endocannabinoid signalling system during brain development, including the presence of element early in the foetus, the location of these elements in particular structures, and the presence of an obvious functionality at early ages (see also Fernandez-Ruiz *et al.*, 2000).

The endocannabinoids and their receptors influence the expression of key genes for neural development: (a) tyrosine hydroxylase (Bonnin *et al.*, 1995; 1996; Hernandez *et al.*, 1997; 2000), (b) proenkephalin, the opioid precursor (Manzanares *et al.*, 1999; Perez-Rosado *et al.*, 2000), (c) the neural adhesion molecule, L1 (Gomez *et al.*, 2003), and (d) the Bcl-2/Bax system involved in apoptosis regulation during brain development (Maccarrone and Finazzi-Agro, 2003). Taken together, these diverse yet converging avenues provide much support for notions of far-reaching consequences of endocannabinoid mechanisms contributing to sufficiency of components necessary for normal brain development.

GABAergic PROCESS IN ANTI-ALCOHOL THERAPY

As indicated by Colombo *et al.* (2004a), the putative application of pharmacological agents in the treatment of alcoholism and alcohol dependence may provide an important adjunct to other therapeutic measures in the achievement of drug abstinence, thereby facilitating the psychosocial supportive and rehabilitative interventions. They review the evidence obtained from preclinical and clinical investigations designed to assess and describe the potential characteristics of the GABA_B receptor agonist, baclofen, to induce alcohol-rejection (expressed by the authors as 'anti-alcohol properties, a term that is adopted here too) and thereby the eventual GABAergic involvement in alcoholism (Smith BR *et al.*, 1992). The genetic inference for the preclinical studies is derived from the use of the Sardinian alcohol-preferring rats whose ethanophilic characteristics, incrementally consolidated over many generations, have been established in the laboratory (*cf.*, Colombo *et al.*, 1995; 1998; 2002; 2004b,c; Agabio *et al.*, 1996; 2000; Vacca *et al.*, 2002). Colombo *et al.* (2000), initially, observed that baclofen, administered i.p. in the dose range of 2.5-10 mg/kg, induced a more or less dose dependent reduction of alcohol intake. Further studies established both the propensity of the anti-alcohol agent to suppress the alcohol deprivation effect and its effects in suppressing motivation to consume alcohol (see also File *et al.*, 1991; Smith BR *et al.*, 1999; Colombo *et al.*, 2003a,b). It is interesting to note (with regard to the above discussion on DA transporter mechanisms in cocaine addiction) that baclofen was found to be effective in the antagonism of nicotine-, cocaine-, and morphine-induced DA release in the rat nucleus accumbens (Fadda *et al.*, 2003), in the context of current notions of DA as reward and motivational

substrate (Spanagel and Weiss, 1999; Weiss and Porrino, 2002; Weiss *et al.*, 1993). Colombo *et al.* (2004a) describe also the findings of several clinical investigations to establish the anti-alcohol properties of baclofen. For example, Addolorato *et al.* (2002a) carried out a double-blind study on 39 alcoholic patients that assessed the effects of baclofen on the consumption of alcoholic beverages and on alcohol craving, and it was shown that a greater proportion of the patients that received baclofen, compared with the placebo-treated group, both completed the study and achieved and maintained complete abstinence during the 4-week period. These results are presented in detail (Colombo *et al.*, 2004a). In a separate study, Addolorato *et al.* (2002b) assessed the effects of baclofen upon the severity of the alcohol withdrawal syndrome and it was observed that the GABA_B agonist abolished these symptoms in all the patients; furthermore, the compound was found efficacious in suppression of delirium tremens (Addolorato *et al.*, 2003). Although these latter results pertaining to GABAergic mechanisms (a generally inhibitory neurotransmitter) in the complex range of expressions associated with alcohol withdrawal (and a major contributory factor in the difficulties related to the treatment of the disorder), it is necessary to bear in mind the glutamate antagonist action of alcohol at higher doses and the increased glutamatergic neurotransmission (a generally excitatory action) involved in the alcohol withdrawal hyperexcitability condition (Krystal *et al.*, 2003) where the actions of baclofen have been implicated (Misgeld *et al.*, 1995).

The complexities of gene-environment interplay defy any attempts to achieve a semblance, nevertheless in the context of the substance abuse-personality disorders, discussed above, it may of relevance to review certain outcome possibilities in the cycle of violence in maltreated children. Thus, Caspi *et al.* (2002) studied male children from birth to adulthood to address the question: why do some maltreated children grow up to develop antisocial behavioural whereas others do not? It was shown that a functional polymorphism in the gene encoding monoamine oxidase-A (MAO-A) was found to moderate the effect of maltreatment. Maltreated child with a genotype that conferred high levels of MAO-A expression were less likely to develop antisocial problems. These intriguing results offer epidemiological indications that genotype can modulate vulnerability of an individual to severe environmental insults. It may be borne in mind the significant association between platelet MAO activity behaviour/personality, voluntary alcohol intake and neurochemical measures of serotonergic activity (Oreland *et al.*, 2002a,b).

Acknowledgement

We are very grateful to Ingvar Lundberg for some valuable insights in the preparation of this article.

References

Adalbjarnardottir S and FD Rafnsson (2002) Adolescent antisocial behaviour and substance use: longitudinal analyses. *Addict. Behav.* **27**, 227-240.

Addolorato G, F Caputo, E Capristo, M Domenicali, M Bernardi, L Janiri, R Agabio, G Colombo, GL Gessa and G Gasbarrini (2002a) Baclofen efficacy in reducing alcohol craving and intake - a preliminary double-blind randomised controlled study. *Alcohol Alcohol.* **37**, 504-508.

Addolorato G, F Caputo, E Capristo, L Janiri, M Bernardi, R Agabio, G Colombo, GL Gessa and G Gasbarrini (2002b) Rapid suppression of alcohol withdrawal syndrome by baclofen. *Am. J. Med.* **112**, 226-229.

Addolorato G, L Leggio, L Abenavoli, G DeLorenzi, A Parente, F Caputo, L Janiri, E Capristo, GL Rapaccini and G Gasbarrini (2003) Suppression of alcohol delirium tremens by baclofen administration: a case report. *Clin. Neuropharmacol.* **26**, 258-262.

Agabio R, G Cortis, F Fadda, GL Gessa, C Lobina, R Reali and G Colombo (1996) Circadian drinking pattern of Sardinian alcohol-prefering rats. *Alcohol Alcohol.* **31**, 385-388.

Agabio R, MAM Carai, C Lobina, M Pani, R Reali, G Vacca, GL Gessa and G Colombo (2000) Development of shorting-lasting alcohol deprivation effect (ADE) in Sardinian alcohol-prefering rats. *Alcohol* **21**, 59-62.

Alexander J, B Porjesz, L Bauer, S Kuperman, S Morzorati, S O'Connor, J Rohrbaugh, H Begleiter and J Polich (1995) P300 hemispheric amplitude asymmetries from a visual oddball task. *Psychophysiology* **32**, 467-475.

Allcock CC and DM Grace (1988) Pathological gamblers are neither impulsive nor sensation seekers. *Aust. N.Z. J. Psychiatry* **22**, 307-311.

Allen T, FG Moeller, HM Rhoades and DR Cherek (1998) Impulsivity and history of drug dependence. *Drug Alcohol Depend.* **50**, 137-145.

Almasy L, B Porjesz, J Blangero, DB Chorlian, SJ O'Connor, S Kuperman, J Rohrbaugh, LO Bauer, T Reich, J Polich and H Begleiter (1999) Heritability of event-related brain potentials in families with a history of alcoholism. *Am. J. Med. Genet.* **92**, 383-390.

Almasy L, B Porjesz, J Blangero, A Goate, HJ Edenberg, DB Chorlian, S Kuperman, SJ O'Connor, J Rohrbaugh, LO Bauer, T Foroud, JP Rice, T Reich and H Begleiter (2001) Genetics of event-related brain potentials in response to a semantic priming paradigm in families with a history of alcoholism. *Am. J. Human Genet.* **68**, 128-135.

Amark C (1951) A study in alcoholism: clinical, social, psychiatric and genetic investigations. *Acta Psychiatr. Neurol. Scand.* **70** Suppl., 1-283.

Arbuckle T, J Chaikelson and DP Gold (1994) Social drinking and cognitive functioning revisited: the role of intellectual endowment and psychological distress. *J. Stud. Alcohol.* **55**, 352-361.

Archer T (1988) Ethopharmacological approaches to aggressive behaviour. *Nordic J. Psychiatry* **42**, 471-477.

Arlinde C, W Sommer, K Björk, M Reimers, P Hyttia, K Kianmaa and M Heilig (2004) Molecular correlates of the alcohol prefer-

ring phenotype in a genetic rat model: differential gene expression in brains regions implicated in dependence. *Pharmacogenomics J.* **10**, 1038-1044.

Arya R, R Duggirala, JT Williams, L Almasy and J Blangero (2001) Power to localise the major gene for disease liability is increased after accounting for the effects of related quantitative phenotypes. *Genet. Epidemiol.* **18**, S774-S778.

Babor TF, S Berglas, J Mendelson, J Ellingboe and K Miller (1983) Alcohol, affect, and the disinhibition of verbal behaviour. *Psychopharmacology* **80**, 53-60.

Babor TF, M Hofmann, FK DelBoca, V Hesselbrock, RE Meyer, ZS Dolinsky and B Rounsvaile (1992) Types of alcohols, I: evidence for an empirically derived typology based on indicators of vulnerability and severity. *Arch. Gen. Psychiatry* **49**, 599-608.

Badia-Elder NE, RB Stewart, TA Powrozek, KF Roy, JM Murphy and TK Li (2001) Effect of neuropeptide Y (NPY) on oral ethanol intake in Wistar, alcohol-preferring (P), and non-preferring (NP) rats. *Alcohol. Clin. Exp. Res.* **25**, 386-390.

Baker DA, K McFarland, RW Lake, H Shen, X-C Tang, S Toda and PW Kalivas (2003) Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. *Nat. Neurosci.* **6**, 743-749.

Barkley RA (1997) Behavioural inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. *Psychol. Bull.* **121**, 65-94.

Barkley RA, AD Anastopoulos, DC Guevremont and KE Fletcher (1992) Adolescents with attention deficit hyperactivity disorder: mother-child-adolescent interactions, family beliefs and conflicts and maternal psychopathology. *J. Abnormal Child Psychol.* **20**, 263-288.

Barratt E, M Stanford, K Thomas and A Felthous (1997) Neuropsychological and cognitive psychophysiological substrates of impulsive aggression. *Biol. Psychiatry* **41**, 1045-1061.

Bauer L (1997) Frontal P300 decrements, childhood conduct disorder, family history, and the prediction of relapse among abstinent cocaine abusers. *Drug Alcohol Depend.* **44**, 1-10.

Bauer L, S O'Connor and V Hesselbrock (1994) Frontal P300 decrements in antisocial personality disorder. *Alcohol. Clin. Exp. Res.* **18**, 1300-1305.

Begleiter H and B Porjesz (1999) What is inherited in the predisposition toward alcoholism? A proposed model. *Alcohol. Clin. Exp. Res.* **23**, 1125-1135.

Begleiter H, B Porjesz, B Bihari and B Kissin (1984) Event-related brain potentials in boys at risk for alcoholism. *Science* **238**, 1493-1496.

Benson D (1991) The role of frontal dysfunction in attention deficit hyperactivity disorder. *J. Child. Neurol.* **6**, S9-S12.

Benson D (1993) Prefrontal abilities. *Behav. Neurol.* **6**, 75-81.

Biederman J, T Wilens, E Mick, S Milberger, TJ Spencer and SV Faraone (1995) Psychoactive substance use disorders in adults with attention deficit hyperactivity disorder: effects of ADHD and psychiatric comorbidity. *Am. J. Psychiatry* **152**, 1652-1658.

Blaszczynski A, Z Steel and N McConaghay (1997) Impulsivity in pathological gambling: the antisocial impulsivist. *Addiction* **92**, 75-87.

Bleuler M (1955) Familial and personal background of chronic alcoholics, In *Etiology of Chronic Alcoholism* (Drethelm O, Ed.) (CC Thomas: Springfield, IL), pp 165-184.

Blum K, EP Noble, PJ Sheridan, A Montgomery, T Ritchie, P Jagadeeswaran, H Nogami, AH Briggs and JB Cohn (1990) Allelic association of human dopamine D₂ receptor gene in alcoholism. *JAMA* **263**, 2055-2060.

Bohman M, R Cloninger, S Sigvardsson and A-L von Knorring (1987) The genetics of alcoholisms and related disorders. *J. Psychiatr. Res.* **21**, 447-452.

Bonnin A, R de Miguel, ML Hernandez, JA Ramos and JJ Fernandez-Ruiz (1995) The prenatal exposure to Δ⁹-tetrahydrocannabinol affects the gene expression and the activity of tyrosine hydroxylase during early brain development. *Life Sci.* **56**, 2177-2184.

Bonnin A, R de Miguel, JG Castro, JA Ramos and JJ Fernandez-Ruiz (1996) Effects of prenatal exposure to Δ⁹-tetrahydrocannabinol on the fetal and early postnatal development of tyrosine hydroxylase-containing neurons in the rat brain. *J. Mol. Neurosci.* **7**, 291-308.

Boomsma DI and CV Dolan (1998) A comparison of power to detect a QTL in sib-pair data using multivariate phenotypes, mean phenotypes, and factor scores. *Behav. Genet.* **28**, 329-340.

Boulay D, D Duterte-Boucher, I Leroux-Nicollet, L Naudon and J Constantine (1996) Locomotor sensitization and decrease in [³H]mazindol binding to the dopamine transporter in the nucleus accumbens are delayed after chronic treatments by GBR 12909 or cocaine. *J. Pharmacol. Exp. Ther.* **278**, 330-337.

Brent D, J Perper and C Allman (1987) Alcohol, firearms, and suicide among youth: temporal trends in Allegeny county, Pennsylvania, 1960-1983. *JAMA* **257**, 3369-3372.

Brown ME, RF Anton, R Malcolm and JC Ballenger (1988) Alcohol detoxification and withdrawal seizures: clinical support for a kindling hypothesis. *Biol. Psychiatry* **23**, 507-514.

Bushman B (1993) Human aggression while under the influence of alcohol and other drugs: an integrative research review. *Curr. Direc. Psychol. Sci.* **2**, 148-152.

Bushman B (1997) Effects of alcohol on human aggression: validity of proposed explanations, In: *Recent Developments in Alcoholism* (Galanter M, Ed.) (Plenum Press: New York), pp 227-243.

Bushman B and H Cooper (1990) Effects of alcohol on human aggression: an integrative research review. *Psychol. Bull.* **107**, 341-354.

Buss T, R Abdu and J Walker (1995) Alcohol, drugs, and urban violence in a small city trauma center. *J. Subst. Abuse Treat.* **12**, 75-83.

Caberlotto L, A Thorsell, R Rimondini, W Sommer, P Hyytia and M Heilig (2001) Differential expression of NPY and its receptors in alcohol-preferring AA and alcohol-avoiding ANA rats. *Alcohol. Clin. Exp. Res.* **25**, 1564-1569.

Cadoret RJ (1992) Genetic and environmental factors in initiation of drug use and the transition to abuse, In *Vulnerability to Drug Abuse* (Glantz M and R Pickens, Eds.) (American Psychological Association: Washington, DC), pp 99-113.

Cadoret RJ, CA Cain and RR Crowe (1983) Evidence for gene-environment interaction in the development of adolescent antisocial behaviour. *Behav. Genet.* **13**, 301-310.

Cadoret RJ, TW O'Gorman, E Heywood and E Troughton (1985) Genetic and environment factors in major depression. *J. Affect. Disord.* **9**, 155-164.

Cadoret RJ, E Troughton, TW O'Gorman and E Heywood (1986) An adoption study of genetic and environmental factors in drug abuse. *Arch. Gen. Psychiatry* **43**, 1131-1136.

Cadoret RJ, WR Yates, E Troughton, G Woodworth and MA Stewart (1995) Genetic-environmental interaction in the genesis of aggressivity and conduct disorders. *Arch. Gen. Psychiatry* **52**, 916-924.

Cadoret RJ, G Winokur, D Langbehn, E Troughton, WR Yates and MA Stewart (1996) Depression spectrum disease, I: the role of gene-environment interaction. *Am. J. Psychiatry* **153**, 892-899.

Carboneau R, RE Tremblay, F Vitaro, PL Dobkin, JF Saucier and

RO Pihl (1998) Paternal alcoholism, paternal absence and the development of problem behaviours in boys from age six to twelve years. *J. Stud. Alcohol.* **59**, 387-398.

Carlton PL and P Manowitz (1994) Factors determining the severity of pathological gambling in males. *J. Gambl. Stud.* **10**, 147-157.

Caspi A, J McClay, TE Moffitt, J Mill, J Martin, IW Craig, A Taylor and R Poulton (2002) Role of genotype in the cycle of violence in maltreated children. *Science* **297**, 851-854.

Castellani B and L Rugle (1995) A comparison of pathological gamblers to alcoholics and cocaine misusers on impulsivity, sensation seeking and craving. *Int. J. Addict.* **30**, 275-289.

Castellani B, E Wootton, L Rugle, R Wedgeworth, K Prabucki and R Olson (1996) Homelessness, negative effect, and coping among veterans with gambling problems who misused substances. *Psychiatr. Serv.* **47**, 298-299.

Chabrol H and J Armitage (2002) Substance use and the development of antisocial personality in depressed adolescents. *Arch. Gen. Psychiatry* **59**, 665-667.

Chalmers D, NL Olenick and W Stein (1993) Dispositional traits as risk in problem drinking. *J. Subst. Abuse* **5**, 401-410.

Chassin L, DR Pillow, PJ Curran, BS Molina and M Barrera Jr (1993) Relation of parental alcoholism to early adolescent substance use: a test of three mediating mechanisms. *J. Abnorm. Psychol.* **102**, 3-19.

Chermack S and P Giancola (1997) The relationship between alcohol and aggression: an integrated biosocial approach. *Clin. Psychol. Rev.* **6**, 621-649.

Choquet M, H Menke and R Manfredi (1991) Interpersonal aggressive behaviour and alcohol consumption among young urban adolescents in France. *Alcohol Alcohol.* **26**, 381-390.

Clark DB, L Lesnick and AM Hegedus (1997) Traumas and other adverse life events in adolescents with alcohol abuse and dependence. *J. Am. Acad. Child. Adolesc. Psychiatry* **36**, 1744-1751.

Clark DB, J Cornelius, DS Wood and M Vanyukov (2004) Psychopathology risk transmission in children of parents with substance use disorders. *Am. J. Psychiatry* **161**, 685-691.

Cloninger CR (1987) A systematic method for clinical description and classification of personality variants. *Arch. Gen. Psychiatry* **44**, 573-588.

Cloninger CR (1991) D₂ dopamine receptor gene is associated but not linked with alcoholism. *JAMA* **266**, 1833-1834.

Cloninger R, M. Bohman and S Sigvardsson (1981) Inheritance of alcohol abuse: crossfostering analysis of adopted men. *Arch. Gen. Psychiatry* **36**, 861-868.

Cloninger R, S Sigvardsson, S Gilligan, A Von Knorring, T Reich and M Bohman (1988) Genetic heterogeneity and the classification of alcoholism. *Adv. Alcohol. Subst. Abuse* **7**, 3-17.

Cohen HL, B Porjesz and H Begleiter (1993) The effects of ethanol on EEG activity in males at risk for alcoholism. *Electroencephalogr. Clin. Neurophysiol.* **86**, 368-376.

Cohen HL, J Ji, DB Chorlian, H Begleiter and B Porjesz (2002) Alcohol-related ERP changes recorded from different modalities: a topographic analysis. *Alcohol. Clin. Exp. Res.* **26**, 303-317.

Collins J and P Messerschmidt (1993) Epidemiology of alcohol-related violence. *Alcohol Health Res. World* **17**, 93-100.

Collins SL and S Izewasser (2002) Cocaine differentially alters behaviour and neurochemistry in periadolescent versus adult rats. *Dev. Brain Res.* **138**, 27-34.

Colombo G, R Agabio, C Lobina, R Reali, A Zocchi, F Fadda and GL Gessa (1995) Sardinian alcohol-preferring rats: a genetic animal model of anxiety. *Physiol. Behav.* **57**, 1181-1185.

Colombo G, R Agabio, C Lobina, R Reali, G Vacca and GL Gessa (1998) Stimulation of locomotor activity by voluntarily consumed ethanol in Sardinian alcohol-preferring rats. *Eur. J. Pharmacol.* **357**, 109-113.

Colombo G, R Agabio, MAM Carai, C Lobina, M Pani, R Reali, G Addolorato and GL Gessa (2000) Ability of baclofen in reducing alcohol intake and withdrawal severity: I - preclinical evidence. *Alcohol. Clin. Exp. Res.* **24**, 58-66.

Colombo G, S Serra, G Brunetti, R Gomez, S Melis, G Vacca, MAM Carai and GL Gessa (2002) Stimulation of voluntary ethanol intake by cannabinoid receptor agonists in ethanol-preferring sP rats. *Psychopharmacology* **159**, 181-187.

Colombo G, S Serra, G Brunetti, G Vacca, MA Carai and GL Gessa (2003a) Suppression by baclofen of alcohol deprivation effect in Sardinian alcohol-preferring (sP) rats. *Drug Alcohol Depend.* **70**, 105-108.

Colombo G, G Vacca, S Serra, G Brunetti, MA Carai and GL Gessa (2003b) Baclofen suppresses motivation to consume alcohol in rats. *Psychopharmacology (Berl.)* **167**, 221-224. Epub 2003 Apr 01.

Colombo G, G Addolorato, R Agabio, MAM Carai, F Pibiri, S Serra, G Vacca and GL Gessa (2004a) Role of GABA_B receptor in alcohol dependence: reducing effect of baclofen on alcohol intake and alcohol motivational properties in rats and amelioration of alcohol withdrawal syndrome and alcohol craving in human alcoholics. *Neurotoxicity Res.* **6**, 403-414.

Colombo G, S Serra, G Vacca, GL Gessa and MA Carai (2004b) Suppression by baclofen of the stimulation of alcohol intake induced by morphine and WIN 55,212-2 in alcohol-preferring rats. *Eur. J. Pharmacol.* **492**, 189-193.

Colombo G, G Vacca, S Serra, MA Carai and GL Gessa (2004c) Suppressing effect of the cannabinoid CB(1) receptor antagonist, SR 141 of alcohol's motivational properties in alcohol-preferring rats. *Eur. J. Pharmacol.* **498**, 119-123.

Comeau N, SH Stewart and P Loba (2001) The relations of trait anxiety, anxiety sensitivity, and sensation seeking to adolescents' motivations for alcohol, cigarette, and marijuana use. *Addict. Behav.* **26**, 803-825.

Comings DE, D Muhleman, C Ahn, R Gysin and SD Flanagan (1994) The dopamine D₂ receptor gene, a genetic risk factor in substance abuse. *Drug Alcohol Depend.* **34**, 175-180.

Comings DE, RJ Rosenthal, HR Lesieur, LJ Rugle, D Muhleman, C Chiu, G Dietz and D Muhleman (1996) A study of the dopamine D₂ receptor gene in pathological gambling. *Pharmacogenetics* **6**, 223-234.

Conway KP, JD Swendsen, J Bruce, BJ Rounsville and KR Merikangas (2002) Personality, drug of choice, and comorbid psychopathology among substance abusers. *J. Drug Alcohol Depend.* **65**, 225-234.

Cook BL, ZW Wang, RR Crowe, R Hauser and M Freimer (1992) Alcoholism and the D₂ receptor gene. *Alcohol. Clin. Exp. Res.* **16**, 806-809.

Cookson H (1994) Personality variables associated with alcohol use in young offenders. *Pers. Individ. Diff.* **16**, 179-182.

Corr PJ and V Kumari (2000) Individual differences in mood reactions to d-amphetamine: a test of three personality factors. *J. Psychopharmacol.* **14**, 371-377.

Crowley TJ, SK Mikulich, M MacDonald, SE Young and GO Zerbe (1998) Substance-dependent, conduct-disordered adolescent males: severity of diagnosis predicts 2-year outcome. *Drug Alcohol Depend.* **49**, 225-237.

Czerwinski SA, MC Mahaney, JT Williams, L Almasy and J Blangero (1999) Genetic analysis of personality traits and alcoholism using a mixed discrete continuous trait variance compo-

ment model. *Genet. Epidemiol.* **17**, S121-S126.

Daghestani AN, E Elenz and JW Crayton (1996) Pathological gambling in hospitalized substance abusing veterans. *J. Clin. Psychiatry* **57**, 360-363.

Damasio A and S Anderson (1993) The frontal lobes, In *Clinical Neuropsychology* (Heilman K and E Valenstein, Eds.) (Oxford University Press: New York), pp 409-460.

Dawes MA, RE Tarter and L Kirisci (1997) Behavioural self-regulation: correlates and 2-year follow-ups for boys at risk for substance abuse. *Drug Alcohol Depend.* **45**, 165-176.

Dembo R, K Pacheco, J Schmeidler, L Fisher and S Cooper (1997) Drug use and delinquent behaviour among high risk youths. *J. Child. Adolesc. Subst. Abuse* **6**, 1-25.

Disney ER, IJ Elkins, M McGue and WG Iacono (1999) Effects of ADHD, conduct disorder, and gender on substance use and abuse in adolescence. *Am. J. Psychiatry* **156**, 1515-1521.

Drake M, A Pakalnis, M Brown and S Hietter (1988) Auditory event related potentials in violent and nonviolent prisoners. *Eur. Arch. Psychiatr. Neurol. Sci.* **238**, 7-10.

Drevets WC, JL Price, JR Simpson, RD Todd, T Reich, M Vannier and ME Raichle (1997) Subgenual prefrontal cortex abnormalities in mood disorders. *Nature* **386**, 824-827.

Eisen SV, DJ Youngman, MC Grob and DL Dill (1992) Alcohol, drugs and psychiatric disorders: a current view of hospitalized adolescents. *J. Adolesc. Res.* **7**, 250-265.

Enoch MA and D Goldman (2001) The genetics of alcoholism and alcohol abuse. *Curr. Psychiatr. Rep.* **3**, 144-151.

Evert D and M Oscar-Berman (1995) Alcohol-related cognitive impairments: an overview of how alcoholism may affect the workings of the brain. *Alcohol Health Res. World* **19**, 89-96.

Eysenck SBG and HJ Eysenck (1978) Impulsiveness and venturesomeness: their position in a dimensional system of personality description. *Psychol. Rep.* **43**, 1247-1255.

Eysenck SBG and BJ McGurk (1980) Impulsiveness and venturesomeness in a detention centre population. *Psychol. Rep.* **47**, 1299-1306.

Eysenck SBG, PR Pearson, G Easting and J Allsop (1985) Age norms for impulsiveness, venturesomeness, and empathy in adults. *Pers. Individ. Diff.* **6**, 516-519.

Fadda P, M Scherma, A Fresu, M Collu and W Fratta (2003) Baclofen antagonises nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of the rat. *Synapse* **50**, 1-6.

Fals-Stewart W, ML Kelley, CG Cooke and JC Golden (2003) Predictors of the psychosocial adjustment of children living in households of parents in which fathers abuse drugs. The effects of postnatal parental exposure. *Addict. Behav.* **28**, 1013-1031.

Feigelman W, PH Kleinman, HR Lesieur, R Millman and M Lesser (1995) Pathological gambling among methadone patients. *Drug Alcohol Depend.* **39**, 75-81.

Fernandez-Ruiz JJ, F Berrendero, ML Hernandez, J Romero and JA Ramos (1999) Role of endocannabinoids in brain development. *Life Sci.* **65**, 725-736.

Fernandez-Ruiz JJ, F Berrendero, ML Hernandez, J Romero and JA Ramos (2000) The endogenous cannabinoid system and brain development. *Trends Neurosci.* **23**, 14-20.

Fernandez-Ruiz JJ, M Gomez, M Hernandez, R de Miguel and JA Ramos (2004) Cannabinoids and gene expression during brain development. *Neurotoxicity Res.* **6**, 389-402.

File SE, A Zharkovsky and K Gulati (1991) Effects of baclofen and nitrendipine on ethanol withdrawal responses in the rat. *Neuropharmacology* **30**, 183-190.

Flory K, D Lynam, R Milich, C Leukefeld and R Clayton (2002) The relations among personality, symptoms of alcohol and marijuana abuse, and symptoms of comorbid psychopathology: results from a community sample. *Exp. Clin. Psychopharmacol.* **10**, 425-434.

Fox HC, AC Parrott and JJ Turner (2001) Ecstasy use: cognitive deficits related to dosage rather than self-reported problematic use of the drug. *J. Psychopharmacol.* **15**, 273-281.

Frances RJ, S Timm and S Bucky (1980) Studies of familial and nonfamilial alcoholism. *Arch. Gen. Psychiatry* **37**, 564-566.

Fredriksson A and T Archer (2004) Neurobehavioural deficits associated with apoptotic neurodegeneration and vulnerability for ADHD. *Neurotoxicity Res.* **6** (In press)

Gabbay FH, CC Duncan, G Bird, GR Uhl and AF Mirsky (1996) D₂ dopamine receptor *Taq1A* genotype differences in event-related brain potentials, In *Problems of Drug Dependence 1995* (Harris LS, Ed.) (NIDA Research Monograph 162: Rockville, MD, USA), p 129.

Gabel S, J Stadler, J Bjorn and R Shindladecker (1995) Homovanillic acid and dopamine-beta-hydroxylase in male youth: relationships with parental substance abuse and antisocial behaviour. *Am. J. Drug Alcohol Abuse* **21**, 363-378.

Galen LW, KJ Brower, BW Gillespie and RA Zucker (2000) Sociopathy, gender, and treatment outcome among outpatient substance abusers. *Drug Alcohol Depend.* **60**, 23-33.

Gerra G, A Zaimovic, G Giucastro, M Maestri, C Monica, R Sartori, R Caccavari and R Delsignore (1998) Serotonergic function after (±)3, 4-methylene-dioxy-methamphetamine (MDMA, "ecstasy") in humans. *Int. Clin. Psychopharmacol.* **13**, 1-9.

Gerra G, A Zaimovic, U Zambelli, M Timpano, E Neri, GF Marzocchi, R Delsignore and F Brambilla (2000) Long-lasting effects of (±)3, 4-methylene-dioxy-methamphetamine (ecstasy) on serotonin system function in humans. *Biol. Psychiatry* **47**, 127-136.

Gerra G, A Zaimovic, F Giusti, R Delsignore, MA Raggi, G Laviola, T Macchia and F Brambilla (2001) Experimentally-induced aggressive behaviour in subjects with (±)3, 4-methylene-dioxy-methamphetamine (MDMA, "ecstasy") use history: psychobiological correlates. *J. Subst. Abuse* **13**, 471-491.

Gerra G, A Zaimovic, G Moi, F Giusti, S Gardini, R Delsignore, G Laviola, T Macchia and F Brambilla (2002) Effects of (±)3, 4-methylene-dioxy-methamphetamine (ecstasy) on dopamine system function in humans. *Behav. Brain Res.* **134**, 403-410.

Gerra G, S Bassignana, A Zaimovic, G Moi, M Bussandri, R Caccavari, F Brambilla and E Molina (2003) Hypothalamic-pituitary-adrenal axis responses to stress in subjects with 3,4-methylene-dioxy-methamphetamine ('ecstasy') use history: correlation with dopamine receptor sensitivity. *Psychiatry Res.* **120**, 115-124.

Giancola P (1995) Evidence for dorsolateral and orbital prefrontal cortical involvement in the expression of aggressive behaviour. *Agress. Behav.* **21**, 431-450.

Giancola PR (2000) Executive functioning: a conceptual framework for alcohol-related aggression. *Exp. Clin. Psychopharmacol.* **8**, 576-597.

Giancola R, C Martin, R Tarter, W Pelham and H Moss (1996) Executive cognitive functioning and aggressive behaviour in preadolescent boys at high risk for substance abuse/dependence. *J. Stud. Alcohol* **57**, 352-359.

Gleason-Milgram G (1993) Adolescents, alcohol and aggression. *J. Stud. Alcohol Suppl.* **11**, 53-61.

Glenn SW, OA Parsons and LT Smith (1996) ERP responses to target and nontarget visual stimuli in alcoholics from VA and community treatment programs. *Alcohol* **15**, 85-92.

Goeders NE (2002) The HPA axis and cocaine reinforcement. *Psychoneuroendocrinology* **27**, 13-33.

Gomez M, ML Hernandez, B Johansson, R de Miguel, JA Ramos and JJ Fernandez-Ruiz (2003) Prenatal cannabinoid exposure and gene expression for neural adhesion molecule L1 in the fetal rat brain. *Dev. Brain Res.* **147**, 201-207.

Gorenstein E (1987) Cognitive perceptual deficit in an alcoholism spectrum disorder. *J. Stud. Alcohol* **48**, 310-318.

Gorman DM and JH Derzon (2002) Behavioural traits and marijuana use and abuse, a meta-analysis of longitudinal studies. *Addict. Behav.* **27**, 193-206.

Gottfredson MR and T Hirschi (1990) *A General Theory of Crime* (Stanford University Press: Stanford, CA).

Griffen KW, GJ Botvin, JA Epstein, MM Doyle and T Diaz (2000) Psychosocial and behavioural factors in early adolescence as predictors of heavy drinking among high school seniors. *J. Stud. Alcohol* **61**, 603-606.

Grob CS, RE Poland, L Chang and T Ernst (1996) Psychobiologic effects of 3,4-methylenedioxymethamphetamine in humans: methodological considerations and preliminary observations. *Behav. Brain Res.* **73**, 103-107.

Grove WM, ED Eckert, L Heston, TJ Bouchard Jr, N Segal and DT Lykken (1990) Heritability of substance abuse and antisocial behaviour: a study of monozygotic twins reared apart. *Biol. Psychiatry* **27**, 1293-1304.

Guerrini C (2002) Mechanisms involved in central nervous system dysfunctions induced by prenatal ethanol exposure. *Neurotoxicity Res.* **4**, 327-335.

Guerrini C, E Climent and M Pascual (2001) Ethanol exposure enhances apoptosis during brain development and affects brain-derived neurotrophic factor and its TrkB receptors. *Alcohol Alcoholism* **36**, 437-439.

Hada M, B Porjesz, DB Chorlian, H Begleiter and J Polich (2001) Auditory P3a deficits in male subjects at high risk for alcoholism. *Biol. Psychiatry* **38**, 726-738.

Hadfield MG, DEW Mott and JA Ismay (1980) Cocaine: effect of *in vivo* administration on synaptosomal uptake of norepinephrine. *Biochem. Pharmacol.* **29**, 1861-1863.

Harmon-Jones E, E Barratt and C Wigg (1997) Impulsiveness, aggression, reading, and the P300 of the event-related potential. *Pers. Individ. Diff.* **22**, 439-445.

Heath AC, KK Buchholz, PA Madden, SH Dinwiddie, WS Slutske, LJ Bierut, DJ Statham, MP Dunne, JB Whitfield and NG Martin (1997) Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. *Psychol. Med.* **27**, 1381-1396.

Heidbreder CA, AC Thompson and TS Shippenberg (1996) Role of extracellular dopamine in the longterm expression of behavioural sensitisation to cocaine. *J. Pharmacol. Exp. Ther.* **278**, 490-502.

Heikkila RE, H Orlansky and G Cohen (1975) Studies on the distinction between uptake inhibition and release of [³H]dopamine in rat brain tissue slices. *Biochem. Pharmacol.* **24**, 847-852.

Heilig M and W Sommer (2004) Functional genomics strategies to identify susceptibility genes and treatment targets in alcohol dependence. *Neurotoxicity Res.* **6**, 363-372.

Heilig M and A Thorsell (2002) Brain neuropeptide Y (NPY) in stress and alcohol dependence. *Rev. Neurosci.* **13**, 85-94.

Heilig M, B Söderpalm, JA Engel and E Widerlöv (1989) Centrally administered neuropeptide Y (NPY) produces anxiolytic-like effects in animal anxiety models. *Psychopharmacology* **98**, 524-529.

Heilig M, GF Koob, R Ekman and KT Britton (1994) Corticotropin-releasing factor and neuropeptide Y: role in emotional integration. *Trends Neurosci.* **17**, 80-85.

Helmus TC, KK Downey, CL Arfken, MJ Henderson and CR Schuster (2001) Novelty seeking as a predictor of treatment retention for heroin dependent cocaine users. *Drug Alcohol Depend.* **61**, 287-295.

Hernandez ML, L Garcia-Gil, F Barrendero, JA Ramos and JJ Fernandez-Ruiz (1997) Δ^9 -Tetrahydrocannabinol increases activity of tyrosine hydroxylase in cultured fetal mesencephalic neurons. *J. Mol. Neurosci.* **8**, 83-91.

Hernandez ML, F Barrendero, I Suarez, L Garcia-Gil, M Cebeira, K Mackie, JA Ramos and JJ Fernandez-Ruiz (2000) Cannabinoid CB₁ receptors colocalize with tyrosine hydroxylase in cultured fetal mesencephalic neurons and their activation increases the levels of this enzyme. *Brain Res.* **857**, 56-65.

Hesselbrock V, L Bauer, S O'Connor and R Gillen (1993) Reduced P300 amplitude in relation to family history of alcoholism and antisocial personality disorder among young men at risk for alcoholism. *Alcohol. Alcoholism (Suppl. 2)* 95-100.

Hill SY, D Muka, S Steinhauer and J Locke (1995) P300 amplitude decrements in children from families of alcoholic female probands. *Biol. Psychiatry* **32**, 622-632.

Hill SY, J Locke, N Zizza, B Kaplan, K Neiswanger, SR Steinhauer, G Wipprecht and J Xu (1998) Genetic association between reduced P300 amplitude and the DRD2 dopamine receptor A1 allele in children at risk for alcoholism. *Biol. Psychiatry* **43**, 40-51.

Hill SY, S Shen, J Locke, SR Steinhauer, C Konicky, L Lowers and J Connolly (1999) Developmental delay in P300 production in children at high risk for developing alcohol-related disorders. *Biol. Psychiatry* **36**, 970-981.

Hoaken P, P Giancola and R Pihl (1998) Executive cognitive functions as mediators of alcohol-related aggression. *Alcohol. Alcoholism* **33**, 47-54.

Horger BA, K Shelton and S Schenk (1990) Preexposure sensitizes rats to the rewarding effects of cocaine. *Pharmacol. Biochem. Behav.* **37**, 707-711.

Hull J and C Bond (1986) Social and behavioural consequences of alcohol consumption and expectancy: a meta-analysis. *Psychol. Bull.* **99**, 347-360.

Iacono WG (1998) Identifying psychophysiological risk for psychopathology: examples from substance abuse and schizophrenia research. *Psychophysiology* **35**, 621-637.

Iacono WG, SR Carlson, J Taylor, IJ Elkins and M McGue (1999) Behavioural disinhibition and the development of substance-use disorders: findings from the Minnesota Twin Family Study. *Dev. Psychopathol.* **13**, 869-900.

Iacono WG, SR Carlson, SM Malone and M McGue (2002) P3 event-related potential amplitude and the risk for disinhibitory disorders in adolescent boys. *Arch. Gen. Psychiatry* **59**, 750-757.

Iacono WG, SM Malone and M McGue (2003) Substance use disorders, externalising psychopathology, and P300 event-related potential amplitude. *Int. J. Psychophysiol.* **48**, 147-178.

Ilveskoski E, OA Kajander, T Lehtimaki, T Kunnas, PJ Karhunen, P Heinala, M Virkkunen and H Alho (2001) Association of neuropeptide Y polymorphism with the occurrence of type I and type II alcoholism. *Alcohol Clin. Exp. Res.* **25**, 1420-1422.

Ito T, N Miller and V Pollock (1996) Alcohol and aggression: a meta-analysis of the moderating effects of inhibitory cues, triggering events, and self-focussed attention. *Psychol. Bull.* **120**, 60-82.

Izenwasser S (2004) The role of the dopamine transporter in cocaine abuse. *Neurotoxicity Res.* **6**, 379-384.

Izenwasser S and BM Cox (1992) Inhibition of dopamine uptake by cocaine and nicotine: tolerance to chronic treatments. *Brain Res.* **573**, 119-125.

Izenwasser S, D French, FI Carroll, and PM Kunko (1999) Continuous infusion of selective dopamine uptake inhibitors or cocaine produces time-dependent changes in locomotor activity. *Behav. Brain Res.* **99**, 201-208.

Jackson KM, KJ Sher and PK Wood (2000) Prospective analysis of comorbidity: tobacco and alcohol use disorders. *J. Abnorm. Psychol.* **109**, 679-694.

Jacob T and S Johnson (1997) Parenting influences on the development of alcohol abuse and dependence. *Alcohol Health Res. World* **21**, 204-209.

Jaffe LT and RP Archer (1987) The prediction of drug use among college students from MMPI, MCMI, and sensation seeking scales. *J. Pers. Assess.* **51**, 243-253.

Jang KL, PA Vernon and WJ Livesey (2000) Personality disorder traits, family environment, and alcohol misuse: a multivariate behavioural genetic analysis. *Addiction* **95**, 873-888.

Janowsky DS, J Fawcett, K Meszaros and R Verhuel (2001) Core heritable personality characteristics and relapse in alcoholics. *Alcohol Clin. Exp. Res.* **25**, 94S-98S.

Johnson EO, MBM van den Bree, GR Uhl and RW Pickens (1996) Indicators of genetic and environmental influence in drug abusing individuals. *Drug Alcohol Depend.* **41**, 17-23.

Johnson JL and M Leff (1999) Children of substance abusers: overview of research findings. *Am. Acad. Pediatr.* **103**, 1085-1099.

Johnson R (1993) On the neural generators of the P300 component of the event-related potential. *Psychophysiol.* **30**, 90-97.

Kalivas PW (2004) Recent understanding in the mechanisms of addiction. *Curr. Psychiatry Rep.* **6**, 347-351.

Kalivas PW and P Duffy (1993) Time course of extracellular dopamine and behavioural sensitisation to cocaine I. Dopamine axon terminals. *J. Neurosci.* **13**, 266-275.

Kalivas PW and P Duffy (1998) Repeated cocaine administration alters extracellular glutamate in the ventral tegmental area. *J. Neurochem.* **70**, 1497-1502.

Kalivas PW, P Duffy, LA DuMars and C Skinner (1988) Behavioural and neurochemical effects of acute and daily cocaine administration in rats. *J. Pharmacol. Exp. Ther.* **245**, 485-492.

Kalivas PW, KK Szumlinski and P Worley (2004) *Homer2* gene deletion in mice produces a phenotype similar to chronic cocaine treated rats. *Neurotoxicity Res.* **6**, 385-388.

Kaufman-Kantor G and M Straus (1990) Parental drinking and violence and child aggression. Paper presented at the 98th Annual Convention of the American Psychological Association. Boston, MA.

Kauhanen J, MK Karvonen, U Pesonen, M Koulu, TP Tuomainen, MI Uusitupa and JT Salonen (2000) Neuropeptide Y polymorphism and alcohol consumption in middle-aged men. *Am. J. Med. Genet.* **93**, 117-121.

Kelley SP, MA Nannini, AM Bratt and CW Hodge (2001) Neuropeptide-Y in the paraventricular nucleus increases ethanol self-administration. *Peptides* **22**, 515-522.

Kendler KS and CA Prescott (1998) Cannabis use, abuse, and dependence in a population-based sample of female twins. *Am. J. Psychiatry* **155**, 1016-1022.

Kendler KS, AC Heath, MC Neale, RC Kessler and LJ Eaves (1992) A population-based twin study of alcoholism in women. *J. Am. Med. Assoc.* **268**, 1877-1882.

Kendler KS, LM Karkowski, LA Corey, CA Prescott and MC Neale (1999a) Genetic and environmental risk factors in the aetiology of illicit drug initiation and subsequent misuse in women. *Br. J. Psychiatry* **175**, 351-356.

Kendler KS, MC Neale, P Sullivan, LA Corey, CO Gardner and CA Prescott (1999b) A population-based twin study in women of smoking initiation and nicotine dependence. *Psychol. Med.* **29**, 299-308.

Kendler KS, L Karkowski, L Corey, C Prescott and M Neale (2000) Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population based sample of male twins. *Arch. Gen. Psychiatry* **57**, 261-269.

Kendler KS, KC Jacobson, CA Prescott and MC Neale (2003) Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants and opiates in male twins. *Am. J. Psychiatry* **160**, 687-695.

Kimberg D and M Farah (1993) A unified account of cognitive impairments following frontal lobe damage: the role of working memory in complex, organised behaviour. *J. Exp. Psychol. Gen.* **122**, 411-428.

King GR, C Joyner, T Lee, C Kuhn and EH Ellinwood Jr (1992) Intermittent and continuous cocaine administration: residual behavioural states during withdrawal. *Pharmacol. Biochem. Behav.* **43**, 243-248.

Kish SJ, Y Furukawa, L Ang, SP Vorce and KS Kalasinsky (2000) Striatal serotonin is depleted in brain of a human MDMA (ecstasy) user. *Neurology* **55**, 294-296.

Klatsky A and M Armstrong (1993) Alcohol use, other traits, and risk of unnatural death. *Alcoholism Clin. Exp. Res.* **17**, 1156-1162.

Koehl M, V Lemaire, W Mayo, DN Abrous, S Maccari, PV Piazza, M Le Moal and M Vallée (2002) Individual vulnerability to substance abuse and affective disorders: role of early environmental influences. *Neurotoxicity Res.* **4**, 281-296.

Kopstein AN, RM Crum, DD Celentano and SS Martin (2001) Sensation seeking needs among 8th and 11th graders: characteristics associated with cigarette and marijuana use. *Drug Alcohol Depend.* **62**, 195-203.

Krakowsky M, P Czobor, M Carpenter, J Libiger, M Kunz, H Papezova, B Parker, L Schmader and T Abad (1997) Community violence and inpatients assaults: neurobiological deficits. *J. Neuropsychiatr. Clin. Neurosci.* **9**, 549-555.

Krystal JH, IL Petrakis, G Mason, L Trevisan and DC D'Souza (2003) N-methyl-D-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability. *Pharmacol. Ther.* **99**, 79-94.

Kula NS and RJ Baldessarini (1991) Lack of increase in dopamine transporter binding or function in rat brain tissue after treatment with blockers of neuronal uptake of dopamine. *Neuropharmacol.* **30**, 89-92.

Kumpfer KL (1999) Outcome measures of interventions in the study of children of substance-abusing parents. *Pediatrics* **103**, 1128-1144.

Langbehn DR, RJ Cadoret, K Caspers, EP Troughton and R Yucuis (2003) Genetic and environmental risk factors for the onset of drug use and problems in adoptees. *Drug Alcohol Depend.* **69**, 151-176.

Lapierre D, C Braun and S Hodgins (1995) Ventral frontal deficits in psychopathy: neuropsychological test findings. *Neuropsychologia* **33**, 139-151.

Larkby C and N Day (1997) The effect of prenatal alcohol exposure. *Alcohol Health Res. World* **21**, 192-198.

Latcham RW (1985) Familial alcoholism: evidence from 237 alco-

holics. *Br. J. Psychiatry* **147**, 54-57.

Le Moal M, DN Abrous, V Lemaire and M-F Montaron (2004) Environmentally induced long-term structural changes: cues for functional orientation and vulnerabilities. *Neurotoxicity Res.* **6** (In press).

Leonard K and T Jacob (1988) Alcohol, alcoholism, and family violence, In *Handbook of Family Violence* (Van Hessel V, R Morrison, A Bellack and M Hersen, Eds.) (Plenum: New York), pp 383-406.

Leonard K and M Senchak (1996) Prospective prediction of husband marital aggression within newly wed couples. *J. Abnorm. Psychol.* **105**, 369-380.

Lesieur HR, SB Blume and R Zoppa (1986) Alcoholism, drug abuse and gambling. *Alcohol Clin. Exp. Res.* **10**, 33-38.

Levin FR and HD Kleber (1995) Attention-deficit hyperactivity disorder and substance abuse: relationships and implications for treatment. *Harv. Rev. Psychiatry* **2**, 246-258.

Lezak M (1995) *Neuropsychological Assessment*, 3rd Ed. (Oxford University Press: New York).

Li TK (2000) Pharmacokinetics of responses to alcohol and genes that influence alcohol drinking. *J. Stud. Alcohol* **61**, 5-12.

Litt MD, TF Babor, FK DelBoca, RM Kadden and NL Cooney (1992) Types of alcoholics, II: application of an empirically derived typology to treatment matching. *Arch. Gen. Psychiatry* **49**, 609-614.

Loney J, JE Langhorne, CE Paternite, M Whaley-Klahn, CT Blair-Broeker and M Hacker (1980) The Iowa habit: hyperkinetic/aggressive boys in treatment, In *Human Functioning in Longitudinal Perspective* (Sells SB, R Crandell, M Roff, JS Strauss and W Pollin, Eds.) (Williams & Wilkins: Baltimore, MD), pp 162-185.

Longshore D (1998) Self-control and criminal opportunity: a prospective test of the general theory of crime. *Social Problems* **45**, 102-113.

Longshore D, S Turner and JA Stein (1996) Self-control in a criminal sample: an examination of construct validity. *Criminology* **34**, 209-228.

Lueger R and K Gill (1990) Frontal-lobe cognitive dysfunction in conduct disorder adolescents. *J. Clin. Psychol.* **46**, 696-705.

Lyvers M and I Maltzman (1991) Selective effects of alcohol on Wisconsin Card Sorting Test performance. *Br. J. Addict.* **86**, 399-407.

Maccarrone M and A Finazzi-Agro (2003) The endocannabinoid system, anandamide and the regulation of mammalian cell apoptosis. *Cell Death Differ.* **10**, 946-955.

Maes H, CE Woodward, L Murelle, JM Meyer, JL Silberg, J Hewitt, M Rutter, E Simonoff, A Pickles, R Carboneau, MC Neale and LJ Eaves (1999) Tobacco, alcohol and drug use in 8-16 year-old twins: the Virginia twin study of adolescent behavioural development. *J. Stud. Alcohol* **60**, 293-305.

Majewska MD (2002) HPA axis and stimulant dependence: an enigmatic relationship. *Psychoneuroendocrinology* **27**, 5-12.

Majumder PP, HB Moss and L Murrelle (1998) Familial and non-familial factors in the prediction of disruptive behaviours in boys at risk for substance abuse. *J. Child Psychol. Psychiatry* **39**, 203-213.

Malloy P, N Noel, R Longbaugh and M Beattie (1990) Determinants of neuropsychological impairment in antisocial substance abusers. *Addict. Behav.* **15**, 431-438.

Mannuzza S, RG Klein, A Bessler, P Malloy and M LaPadula (1993) Adult outcome of hyperactive boys: educational achievement, occupational rank, and psychiatric status. *Arch. Gen. Psychiatry* **50**, 565-576.

Manzanares J, J Corchero, J Romero, JJ Fernandez-Ruiz, JA Ramos and JA Fuentes (1999) Pharmacological and biochemical interactions between opioids and cannabinoids. *Trends Pharmacol. Sci.* **20**, 287-294.

Mas M, M Farre, R de la Torre, PN Roset, J Ortuno, J Segura and J Cami (1999) Cardiovascular and neuroendocrine effects and pharmacokinetics of 3,4-methylenedioxymethamphetamine in humans. *J. Pharmacol. Exp. Ther.* **290**, 136-145.

Mato S, E Del Olmo and A Pazos (2003) Ontogenetic development of cannabinoid receptor expression and signal transduction functionality in the human brain. *Eur. J. Neurosci.* **17**, 1747-1754.

Mayerhofer A, KA Kovar and WJ Schmidt (2001) Changes in serotonin, dopamine and noradrenaline levels in striatum and nucleus accumbens after repeated administration of the abused drug MDMA in rats. *Neurosci. Lett.* **308**, 99-102.

Mayfield RD, JM Lewohl, PR Dodd, A Herlihy, J Liu and RA Harris (2002) Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. *J. Neurochem.* **81**, 802-813.

McBurnett K, S Harris, J Swanson, L Pfiffner, L Tamm and D Freeland (1993) Neuropsychological and psychophysiological differentiation of inattention/overactivity and aggression/defiance symptom groups. *J. Clin. Child Psychol.* **22**, 165-171.

McCord J (1981) Alcoholism and criminality: confounding and differentiating factors. *J. Study Alcohol* **42**, 739-748.

McCormick RA, J Taber, N Kreudelbach and A Russo (1997) Personality profiles of hospitalised pathological gamblers: the California Personality Inventory. *J. Clin. Psychol.* **43**, 521-427.

McFarlane K, CC Lapish and PW Kalivas (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behaviour. *J. Neurosci.* **23**, 3531-3537.

McGue M, WG Iacono, LN Legrand and I Elkins (2001) Origins and consequences of age at first drink. II. Familial risk and heritability. *Alcohol Clin. Exp. Res.* **25**, 1156-1165.

McKenna T and R Pickens (1981) Alcoholic children of alcoholics. *J. Stud. Alcohol* **42**, 1021-1029.

Milberger S, J Biederman, SV Faraone, T Wilens and MP Chu (1997) Associations between ADHD and psychoactive substance use disorders. *Am. J. Addiction* **6**, 318-329.

Miles DR, MBM van den Bree and RW Pickens (2002) Sex differences in shared genetic and environmental influences between conduct disorder symptoms and marijuana use in adolescents. *Neuropsychiatric Genet.* **114**, 159-168.

Milner B and M Petrides (1984) Behavioural effects of frontal lobe lesions in man. *Trends Neurosci.* **7**, 403-407.

Misgeld U, M Bijak and W Jarolimek (1995) A physiological role for GABA_B receptor and the effects of baclofen in the mammalian central nervous system. *Prog. Neurobiol.* **46**, 423-462.

Miyake H, K Nagashima, K Onigata, T Nagashima, Y Takano and A Morikawa (1999) Allelic variations of the D₂ dopamine receptor gene in children with idiopathic short stature. *J. Human Genet.* **44**, 26-29.

Moffitt T (1993) Adolescence-limited and life-course-persistence antisocial behaviour: a developmental taxonomy. *Psychol. Rev.* **100**, 674-701.

Moghaddam B (2003) Bringing order to the glutamate chaos in schizophrenia. *Neuron* **40**, 881-884.

Moghaddam B (2004) Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. *Psychopharmacology* **174**, 39-44.

Mokrani MC, F Duval, MA Crocq, PE Bailey and JP Macher (1995) Multihormonal responses to apomorphine in mental illness.

Psychoneuroendocrinology **20**, 365-375.

Morgan A and S Lilienfeld (2000) A meta-analytic review of the relation between antisocial behaviour neuropsychological measures of executive function. *Clin. Psychol. Rev.* **20**, 113-136.

Mulvihill L, T Skilling and M Vogel-Sprott (1997) Alcohol and the ability to inhibit behaviour in men and women. *J. Stud. Alcohol* **58**, 600-605.

Murdoch D, R Pihl and D Ross (1990) Alcohol and crimes of violence: present issues. *Int. J. Addiction* **25**, 1065-1081.

Nadeau L, M Landry and S Racine (1999) Prevalence of personality disorders among clients in treatment for addiction. *Can. J. Psychiatry* **44**, 592-596.

Noble EP (2000) Addiction and its reward process through polymorphisms of the D₂ dopamine receptor gene, a review. *Eur. Psychiatry* **15**, 79-89.

Noll RB, RA Zucker, HE Fitzgerald and JW Curtis (1992) Cognitive and motoric functioning of sons of alcoholic fathers and controls: the early childhood years. *Dev. Psychol.* **28**, 665-675.

O'Connor S, L Bauer, A Tasman and V Hesselbrock (1994) Reduced P3 amplitudes are associated with both a family history of alcoholism and antisocial personality disorder. *Prog. Neuropsychopharmacol. Biol. Psychiatry* **18**, 1307-1321.

Olney JW, T Tenkova, K Dikranian, YQ Qin, J Labruyere and C Ikonomidou (2002a) Ethanol-induced apoptotic neurodegeneration in the developing C57BL/6 mouse brain. *Dev. Brain Res.* **133**, 115-126.

Olney JW, DF Wozniak, V Jevtovic-Todorovic, NB Farber, P Bittigau and C Ikonomidou (2002b) Glutamate and GABA receptor dysfunction in the fetal alcohol syndrome. *Neurotoxicity Res.* **4**, 315-25.

Oreland L, M Damberg, J Hallman, C Berggård and H Garpenstrand (2002a) Risk factors for the neurohumoral alterations underlying personality disturbances. *Neurotoxicity Res.* **4**, 421-426.

Oreland L, M Damberg, J Hallman and H Garpenstrand (2002b) Smoking only explains part of the associations between platelet monoamine oxidase activity and personality. *J. Neural Transm.* **109**, 963-975.

Oscar-Berman M and N Hutner (1993) Frontal lobe changes and chronic alcohol ingestion, In *Alcohol-induced Brain Damage* (NIAAA Research Monograph No. 22, NIH Publication No. 93-3549), (Hunt W and S Nixon, Eds.) (US Department of Health and Human Services, Rockville, MD), pp 121-156.

Palomo T, T Archer, RJ Beninger and RM Kostrzewska (2002) Neurodevelopmental liabilities of substance abuse. *Neurotoxicity Res.* **4**, 267-279.

Palomo T, RJ Beninger, RM Kostrzewska and T Archer (2004) Gene-environment interplay in affect and dementia: emotional modulation of cognitive expression in personal outcomes. *Neurotoxicity Res.* **6**, 159-173.

Parks K, M Testa, J Livingston and L Zanatta (1996) Qualitative analyses of sexually aggressive incidents involving alcohol. Paper presented at the International Conference on Intoxication and Aggressive Behaviour of the Kettil Brunn Society, Toronto, Canada.

Parrott AC (2002) Recreational ecstasy/MDMA, the serotonin syndrome, and serotonergic neurotoxicity. *Pharmacol. Biochem. Behav.* **71**, 837-844.

Parrott AC, RM Milani, R Parmar and JD Turner (2001) Recreational ecstasy/MDMA and other drug users from the UK and Italy: psychiatric symptoms and other psychobiological problems. *Psychopharmacology* **159**, 77-82.

Partridge B and S Schenk (1999) Context-independent sensitisation to the locomotor-activating effects of cocaine. *Pharmacol. Biochem. Behav.* **63**, 543-548.

Perez-Rosado A, J Manzanares, JJ Fernandez-Ruiz and JA Ramos (2000) Prenatal Δ⁹-tetrahydrocannabinol exposure modifies proenkephalin gene expression in the fetal rat brain: sex dependent differences. *Dev. Brain Res.* **120**, 77-81.

Peterson J, J Rothfleisch, P Zelazo and RO Pihl (1990) Acute alcohol intoxication and cognitive functioning. *J. Stud. Alcohol* **51**, 114-122.

Petry NM (2001) Substance abuse, pathological gambling and impulsiveness. *Drug Alcohol Abuse* **63**, 29-38.

Pierce RC, K Bell, P Duffy and PW Kalivas (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioural sensitisation. *J. Neurosci.* **16**, 1550-1560.

Pihl RO and RJ Bruce (1995) Cognitive impairment in children of alcoholics. *Alcohol Health and Res. World* **19**, 142-147.

Pihl RO, J Peterson and M Lau (1993) A biosocial model of the alcohol-aggression relationship. *J. Stud. Alcohol (Suppl.)* **11**, 128-139.

Polich J, VE Pollock and FE Bloom (1994) Meta-analysis of P300 amplitude from males at risk for alcoholism. *Psychol. Bull.* **109**, 55-73.

Ponce G, MA Jimenez-Arriero, G Rubio, J Hoenicka, I Ampuero, JA Ramos and T Palomo (2003) The A1 allele of the *DRD2* gene (*Taq1A* polymorphism) is associated with antisocial personality in a sample of alcohol-dependent patients. *Eur. Psychiatry* **18**, 356-360.

Ponce G, J Hoenicka, R Rodriguez-Jimenez, A Gozalo, M Jimenez, R Monasor, M Aragues, G Rubio, MA Jimenez-Arriero, JA Ramos and T Palomo (2004) *DRD2* *Taq1A* polymorphism is associated with urinary homovanillic acid levels in a sample of Spanish male alcoholic patients. *Neurotoxicity Res.* **6**, 373-377.

Porjesz B, H Begleiter, B Bihari and B Kissin (1987) Event-related brain potentials to high incentive stimuli in abstinent alcoholics. *Alcohol* **6**, 283-287.

Post R, L Lott, R Maddock and J Beede (1996) An effect of alcohol on the distribution of spatial attention. *J. Stud. Alcohol* **57**, 260-266.

Prabhu VR, B Porjesz, DB Chorlian, K Wang, A Stimus and H Begleiter (2001) Visual P3 in female alcoholics. *Alcohol Clin. Exp. Res.* **25**, 229-248.

Prescott CA and KS Kendler (1999) Genetic and environmental contributions to alcohol abuse and dependence in a population-based sample of male twins. *Am. J. Psychiatry* **156**, 34-40.

Prescott CA, SH Aggen and KS Kendler (1999) Sex differences in the source of genetic liability to alcohol abuse and dependence in a population-based sample of US twins. *Alcohol Clin. Exp. Res.* **23**, 1136-1144.

Ramachandra G, B Porjesz, H Begleiter and A Litke (1996) A simple auditory oddball task in young males at risk for alcoholism. *Alcohol Clin. Exp. Res.* **20**, 9-15.

Ramirez LF, RA McCormick, AM Russo and JI Taber (1983) Patterns of substance abuse in pathological gamblers undergoing treatment. *Addictive Behav.* **8**, 425-428.

Ramos JA, R de Miguel, M Cebeira, M Hernandez and J Fernández-Ruiz (2002) Exposure to cannabinoids in the development of endogenous cannabinoid system. *Neurotoxicity Res.* **4**, 363-372.

Ramsey SE and PR Finn (1997) P300 from men with a history of alcoholism under different incentive conditions. *J. Stud. Alcohol* **58**, 606-616.

Rao U, ND Ryan, RE Dahl, B Birmaher, R Rao, DE Williamson and JM Perel (1999) Factors associated with the development of substance use disorder in depressed adolescents. *J. Am. Acad. Child Adolesc. Psychiatry* **38**, 1109-1117.

Regier DA, ME Farmer, DS Rae, BZ Locke, SJ Keith, LL Judd and FK Goodwin (1990) Comorbidity of mental disorders with alcohol and other drug abuse: results from the epidemiologic catchment area (ECA) study. *J. Am. Med. Assoc.* **264**, 2511-2528.

Reich W, F Earls, O Frankel and JJ Shayka (1993) Psychopathology in children of alcoholics. *J. Am. Acad. Child Adolesc. Psychiatry* **32**, 995-1002.

Reid MS and SP Berger (1996) Evidence for sensitisation of cocaine-induced nucleus accumbens glutamate release. *NeuroReport* **7**, 1325-1329.

Ricaurte GA, J Yuan, G Hatzidimitriou, BJ Cord and UD McCann (2002) Severe dopaminergic neurotoxicity in primates after a common recreational dose regimen of MDMA ('ecstasy'). *Science* **297**, 2185-2187.

Ross SB and AL Renyi (1969) Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. *Eur. J. Pharmacol.* **7**, 270-277.

Ruchkin D, R Johnson, H Canoune, W Ritter and M Hammer (1990) Multiple sources of P3b associated with different types of information. *Psychophysiology* **27**, 157-176.

Russell M (1990) Prevalence of alcoholism among children of alcoholics, In *Children of Alcoholics: Clinical Perspectives* (Windle M and JS Searles, Eds.) (Guildford Press: New York), pp 197-207.

Scherrer JF, N Lin, SA Eisen, J Goldberg, WR True, MJ Lyons and MT Tsuang (1996) The association of antisocial personality symptoms with marijuana abuse/dependence: a monozygotic co-twin study. *J. Nerv. Ment. Dis.* **184**, 611-615.

Schuckit MA (1984) Relationship between the course of primary alcoholism in men and family history. *J. Stud. Alcohol* **45**, 334-338.

Schuckit MA (1998) Biological, psychological and environmental predictors of the alcoholism risk: a longitudinal study. *J. Stud. Alcohol* **59**, 485-494.

Schuckit MA and M Irwin (1989) An analysis of the clinical relevance of Type 1 and Type 2 alcoholics. *Br. J. Addiction* **84**, 869-876.

Schuckit MA, TL Smith, S Radziminski and E Heyneman (2000) Behavioural symptoms and psychiatric diagnoses among 162 children in non-alcoholic or alcoholic families. *Am. J. Psychiatry* **157**, 1881-1883.

Seilhamer RA and T Jacob (1990) Family factors in the adjustment of children of alcoholics, In *Children of Alcoholics: Clinical Perspectives* (Windle M and JS Searles, Eds.) (Guildford Press: New York), pp 154-167.

Seto M and H Barbaree (1995) The role of alcohol in sexual aggression. *Clin. Psychol. Rev.* **15**, 545-566.

Shallice T (1982) Specific impairments of planning. *Phil. Trans. Royal Soc. London B* **298**, 199-209.

Sher KJ, BD Bartholow and MD Wood (2000) Personality and substance use disorders: a prospective study. *J. Consult. Clin. Psychol.* **68**, 818-829.

Shippenberg TS and C Heidbreder (1995) Sensitization to the conditioned rewarding effects of cocaine: pharmacological and temporal characteristics. *J. Pharmacol. Exp. Ther.* **273**, 808-815.

Skinstad AH and A Swain (2001) Comorbidity in a clinical sample of substance users. *Am. J. Drug Alcohol Abuse* **27**, 45-64.

Slawec CJ, M Betancourt, T Walpole and CL Ehlers (2000) Increases in sucrose consumption, but not ethanol consumption, following ICV NPY administration. *Pharmacol. Biochem. Behav.* **66**, 591-594.

Slutske WS, AC Heath, SH Dinwiddie, PAF Madden, KK Bucholz, MP Dunne, DJ Statham and NG Martin (1998) Common genetic risk factors for conduct disorder and alcohol dependence. *J. Abnorm. Psychol.* **107**, 363-374.

Smith BR, J Robidoux and Z Amit (1992) GABAergic involvement in the acquisition of voluntary ethanol intake in laboratory rats. *Alcohol Alcohol.* **27**, 227-231.

Smith BR, AEL Boyle and Z Amit (1999) The effects of GABA_B agonist baclofen on the temporal and structural characteristics of ethanol intake. *Alcohol* **17**, 231-240.

Smith S, P Arnett and J Newman (1992) Neuropsychological differentiation of psychopathic and nonpsychopathic criminal offenders. *Personal. Individ. Diff.* **13**, 1233-1243.

Sora I, FS Hall, AM Andrews, M Itokawa, X-F LI, H-B Wei, C Wichems, K-P Lesch, DL Murphy and GR Uhl (2001) Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. *Proc. Natl. Acad. Sci. USA* **98**, 5300-5305.

Sorg BA and C Ulibarri (1995) Application of a protein synthesis inhibitor into the ventral tegmental area, but not the nucleus accumbens, prevents behavioural sensitisation to cocaine. *Synapse* **20**, 217-224.

Spanagel R and F Weiss (1999) The dopamine hypothesis of reward: past and current status. *Trends Neurosci.* **22**, 521-527.

Spunt B, P Goldstein, P Belluci and T Miller (1990) Race/ethnicity and gender differences in the drugs-violence relationship. *J. Psychoactive Drugs* **22**, 293-303.

Spunt B, H Brownstein, P Goldstein, M Fendrich and H Liberty (1995a) Drug use by homicide offenders. *J. Psychoactive Drugs* **27**, 125-134.

Spunt B, H Lesieur, D Hunt and L Cahill (1995b) Gambling among methadone patients. *Int. J. Addict.* **30**, 929-962.

Stanford MS and ES Barratt (1992) Impulsivity and the multi-impulsive personality disorder. *Personal. Individ. Diff.* **7**, 831-834.

Steel Z and A Blaszczynski (1998) Impulsivity, personality disorders and pathological gambling severity. *Addiction* **93**, 895-905.

Stuss D and D Benson (1984) Neuropsychological studies on the frontal lobe. *Psychol. Bull.* **95**, 3-28.

Sussman S and CW Dent (1996) The correlates of alcohol concern among adolescents at high risk for drug abuse. *J. Subst. Abuse* **8**, 361-370.

Sussman S, CW Dent and ER Galaif (1997) The correlates of substance abuse and dependence at risk for drug abuse. *J. Subst. Abuse* **9**, 241-255.

Sussman S, CW Dent and AW Stacy (1999) The association of current stimulant use with demographic, substance use and violence-related, social and intrapersonal variables among high-risk youth. *Addict. Behav.* **24**, 741-748.

Sussman S, CW Dent and L Leu (2000) The one-year prospective prediction of substance abuse and dependence in high-risk adolescents. *J. Subst. Abuse* **12**, 373-386.

Sussman S, SL Ames, CW Dent and AW Stacy (2001) Self-reported high-risk locations of drug use among drug offenders. *Am. J. Drug Alcohol Abuse* **27**, 281-299.

Sussman S, WJ McCuller and CW Dent (2003) The associations of social self-control, personality disorders, and demographics with drug use among high-risk youth. *Addictive Behav.* **28**, 1159-1166.

Swanson CJ, DA Baker, D Carson, PF Worley and PW Kalivas (2001) Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioural activation: a potential role for Homer. *J. Neurosci.*

21, 9043-9052.

Tabakoff B, SV Bhave and PL Hoffman (2003) Selective breeding, quantitative trait locus analysis, and gene arrays identify candidate genes for complex drug-related behaviours. *J. Neurosci.* **23**, 4491-4498.

Thiele TE, DJ Marsh, M Ste, IL Bernstein and RD Palmiter (1998) Ethanol consumption and resistance are inversely related to neuropeptide Y levels. *Nature* **396**, 366-369.

Thorsell A, R Rimondini and M Heilig (2002) Blockade of central neuropeptide Y (NPY) Y2 receptors reduces ethanol self-administration in rats. *Neurosci. Lett.* **332**, 1-4.

True WR, AC Heath, JF Scherer, H Xian, N Lin, SA Eisen, MJ Lyons, J Goldberg and MT Tsuang (1999) Interrelationship of genetic and environmental influences on conduct disorder and alcohol and marijuana dependence symptoms. *Neuropsychiatr. Genet.* **88**, 391-397.

Tsuang MT, MJ Lyons, RM Harley, H Xian, SA Eisen, J Goldberg, WR True and SV Faraone (1999) Genetic and environmental influences on transitions in drug use. *Behav. Genet.* **29**, 473-479.

Tyler P, J Gunderson, M Lyons and M Tohen (1997) Extent of comorbidity between mental state and personality disorders. *J. Personal. Disord.* **11**, 260-269.

Tzschentke TM and WJ Schmidt (2003) Glutamatergic mechanisms in addiction. *Mol. Psychiatry* **8**, 373-382.

US Department of Health and Human Services (1994) Substance abuse among women and parents, National Institute on Drug Abuse and the Office of the Assistant Secretary for Planning and Evaluation, Washington, DC.

Vacca G, S Serra, G Brunetti, MAM Carai, HH Samson, GL Gessa and G Colombo (2002) Operant self-administration of ethanol in Sardinian alcohol-preferring rats. *Alcohol Clin. Exp. Res.* **26**, 1678-1685.

Valdez A, C Kaplan, R Curtis and Z Yin (1995) Illegal drug use, alcohol and aggressive crime among Mexican American and White male arrestees in San Antonio. *J. Psychoactive Drugs* **27**, 135-143.

Van den Bree MBM, EO Johnson, MC Neale, DS Svikis, MM McGue and RW Pickens (1998a) Genetic analysis of diagnostic systems of alcoholism in males. *Biol. Psychiatry* **43**, 139-145.

Van den Bree MBM, DS Svikis and RW Pickens (1998b) Genetic influences in antisocial personality and drug use disorders. *Drug Alcohol Depend.* **49**, 177-187.

Van der Stelt O (1999) ESBRA-Nordmann 1998 Award Lecture: visual P3 as a potential vulnerability marker of alcoholism: evidence from the Amsterdam study of children of alcoholics. *Eur. Soc. Biomedical Research on Alcoholism. Alcohol Alcoholism* **35**, 267-282.

Van der Stelt O, R Geesken, WB Gunning, J Snal and A Kok (1998) P3 scalp topography to target and novel visual stimuli in children of alcoholics. *Alcohol* **17**, 119-136.

Van Praag (2002) Crossroads of corticotrophin releasing hormone, corticosteroids and monoamines. *Neurotoxicity Res.* **4**, 531-555.

Vanderschuren LJ and PW Kalivas (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioural sensitization: a critical view of preclinical studies. *Psychopharmacology* **151**, 99-120.

Vanyukov MM and RE Tarter (2000) Genetic studies of substance abuse. *Drug Alcohol Depend.* **59**, 101-123.

Verhuel R (2001) Co-morbidity of personality disorders in individuals with substance use disorders. *Eur. Psychiatry* **16**, 274-282.

Volkow N and L Tancredi (1987) Neural substrates of violent behaviour: a preliminary study with positron emission tomography. *Br. J. Psychiatry* **151**, 668-673.

Volkow N, R Hitzemann, A Wolf, J Logan, J Fowler, D Christman, S Dewey, D Schlyer, G Burr, S Vitkun and J Hirschowitz (1990) Acute effects of ethanol on regional brain glucose metabolism and transport. *Psychiatr. Res.* **35**, 39-48.

Volkow N, L Tancredi, C Grant, H Gillespie, A Valentine, N Mullan, G Wang and L Hollister (1995a) Brain glucose metabolism in violent psychiatric patients: a preliminary study. *Psychiatr. Res.* **61**, 243-253.

Volkow N, G Wang and J Doria (1995b) Monitoring the brain's response to alcohol with positron emission tomography. *Alcohol Health Res. World* **19**, 296-299.

Wahlestedt C, EM Pich, GF Koob, F Yee and M Heilig (1993) Modulation of anxiety and neuropeptide Y-Y1 receptors by anti-sense oligodeoxynucleotides. *Science* **259**(5094), 528-531.

Weiss F and LJ Porrino (2002) Behavioural neurobiology of alcohol addiction: recent advances and challenges. *J. Neurosci.* **22**, 3332-3337.

Weiss F, MT Lorang, FE Bloom and GF Koob (1993) Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. *J. Pharmacol. Exp. Ther.* **267**, 250-258.

West MO and RJ Prinz (1987) Parental alcoholism and childhood psychopathology. *Psychol. Bull.* **102**, 204-218.

White JL, TE Moffitt, A Caspi, DJ Bartusch, DJ Needles and M Stouthamer-Loeber (1994) Measuring impulsivity and examining its relationship to delinquency. *J. Abnorm. Psychol.* **103**, 192-205.

Williams JT and J Blangero (1999) Asymptotic power of likelihood-ratio tests for detecting quantitative trait loci using the COGA data. *Genet. Epidemiol. Suppl.* **16**, S397-S402.

Williams JT, H Begleiter, B Porjesz, HJ Edenberg, T Foroud, T Reich, A Goate, P Van Eerdewegh, L Almasy, J Blangero (1999) Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. II. Alcoholism and event-related potentials. *Am. J. Human Genet.* **64**, 1148-1160.

Wills TA, K DuHamel and D Vaccaro (1995) Activity and mood temperature as predictors of adolescent substance use: test of a self-regulation mediational model. *J. Pers. Social Psychol.* **68**, 901-916.

Wills TA, JM Sandy and O Sinar (1999) Cloninger's constructs related to substance use level and problems in late adolescence: a mediational model based on self-control and coping motives. *Exp. Clin. Psychopharmacol.* **7**, 122-134.

Wills TA, FX Gibbons, M Gerrard and GH Brody (2000) Protection and vulnerability processes relevant for early onset of substance use. A test among African American children. *Health Psychol.* **19**, 253-263.

Windle M (1997) Concepts and issues in COA research. *Alcohol Health Res. World* **21**, 185-191.

Windle M and JS Searles (1990) *Children of Alcoholics: Critical Perspectives* (Guildford Press: New York).

Wolff WM and AK Wolff (2002) Personality characteristics as a function of frequency and type of substance use. *J. Adolescent* **37**, 706-716.

Yamaguchi S and R Knight (1991) Anterior and posterior association cortex contributions to the somatosensory P300. *J. Neurosci.* **11**, 2039-2054.

Yeudall L, D Fromm-Auch and P Davies (1982) Neuropsychological impairment of persistent delinquency. *J. Nerv. Ment. Dis.* **170**, 257-265.

Young SE, MC Stallings, RP Corley, KS Krauter and JK Hewitt (2000) Genetic and environmental influences on behavioural disinhibition. *Neuropsychiatr. Genet.* **96**, 684-695.

Young SE, RP Corley, MC Stalling, SH Rhee, TJ Crowley and JK Hewitt (2002) Substance use, abuse and dependence in adolescence: prevalence, symptom profiles and correlates. *J. Drug Alcohol Depend.* **68**, 309-322.

Zeichner A, R Pihl, R Niaura and C Zacchia (1982) Attentional processes in alcohol-mediated aggression. *J. Stud. Alcohol* **43**, 714-724.

Zhu G, L Pollak, S Mottagui-Tabar, C Wahlestedt, J Taubman, M Virkkunen, D Goldman and M Heilig (2003) NPY leu7pro and alcohol dependence in Finnish and Swedish populations. *Alcohol Clin. Exp. Res.* **27**, 19-24.

Zucker RA and HE Fitzgerald (1991) Early developmental factors and risk for alcohol problems. *Alcohol Health Res. World* **15**, 18-24.

