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The perinate is particularly risk-prone to chemical
species which have the potential of inducing neuronal
apoptosis or necrosis and thereby adversely altering
development of the brain, to produce life-long functional
and behavioral deficits. This paper is an overview for
many substances of abuse, but the purview is much more
broadened by the realization that even elevated levels of
estrogens and corticosteroids in the pregnant mother can
act as neuroteratogens, by passing via the placenta and
altering neural development or inducing apoptosis in the
perinate. Finally, therapeutic risks of anesthetics are
highlighted, as these too induce neuronal apoptosis in
the neonate by either blocking N-methyl-D-aspartate
receptors or by acting as gamma-aminobutyric acid
agonists. By understanding the mechanisms involved it
may ultimately be possible to interrupt the mechanistic
scheme and thereby prevent neuroteratological pro-
cesses.
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INTRODUCTION

The Fundacion Cerebro y Mente International Meeting
was held over a three-day period in October 2001 in
Mojacar, Spain. The meeting consisted predomi-
nately of 30—40 oral presentations, with additional
poster sessions. Three over-riding themes were
neurodevelopmental and neuroteratologic aspects
of (1) Drug Abuse, (2) Schizophrenia and Affective
Disorders, and (3) Movement Disorders. Papers in
this journal edition, with some papers appearing in
the previous edition of Neurotoxicity Research, are
derived largely from the first of these themes—Drug
Abuse.

In this Introductory paper, we highlight some of
the described neurodevelopmental liabilities of
drug abuse. As indicated by the first two papers,
elevated hormone levels in the mother can produce
changes in ontogenetic development of specific
brain regions. Cortisol is one such hormone,
elevated in the mother’s serum by stress, then
passing via the placenta to the fetus or via milk to
the newborn, and altering receptor number or
second messenger production that can result in life-
long changes in brain. Estrogen is another hormone,
produced by the mother and passed via the
placenta or milk to the neonate, to exert neuropro-
tective and developmental changes. The paper by
Archer et al. describes an animal model of
hyperactivity, produced by ontogenetic destruction
of dopaminergic innervation of forebrain of rats, by
intracerebroventricular administration of the neuro-
toxin 6-hydroxydopamine. Different treatment
modalities validate the model, and implicate
serotoninergic drugs as viable alternative treat-
ments to D-amphetamine or methylphenidate.
Other papers summarize the neuroteratologic
effects of specific substances of abuse, and indicate
the life-long consequences to such ontogenetic
exposure. It will be evidently clear that there is
not only anatomic disorganization, but also intro-
duction of a lability to substance abuse and for
affective disorders in the offspring. Therefore, early
exposure to substances of abuse, as well as elevated
hormone levels in the mother during pregnancy or
lactation, can produce immediate changes in cell
survival and neuronal organization, which can
adversely influence affective mood, ordered think-
ing, learning, and memory throughout life.
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VULNERABILITY TO SUBSTANCE ABUSE:
ONTOGENETIC STRESS

Early environmental influences, even during the
prenatal period, can have long-lasting effects on
development and behavioral patterning in adult-
hood. In a paper by Koehl et al. (2002) this theme
is well defined for stress, either to the mother
while pregnant or to the neonate after birth.
During pregnancy, the link between mother and
child for this effect would be an elevation in the
mother’s plasma corticosteroid level, which would
cross the placenta, enter the circulation of the
fetus, and act on corticosteroid receptors in the
developing brain. After birth, stress in the neonate
would produce an elevation in the neonate
corticosteroid level, which in the case of frequent
or prolonged stress, would produce excessive
stimulation at corticosteroid receptors in brain
and in the hypothalamic-pituitary-adrenal axis
(HPA). Both scenarios are capable of producing
alterations in ontogeny of corticosteroid receptors,
or their sensitivity, for the remainder of the life
span. In this way early stress (or other environ-
mental factors) can have a life-long effect on an
individual. An extension of this theme relates to
the ontogenetically stressed individual’s vulner-
ability to substance abuse.

Several recent studies establish that prenatal stress
or anxiety in humans is linked to low birth weight
(Pagel et al., 1990; Cooper et al.,, 1996), reduced
circulation in the fetal middle cerebral artery
(Sjostrom et al., 1997), increased HPA responsiveness
(Barden et al., 1995), and long-term neurodevelop-
mental effects (Glover, 1997).

Experimentally, prenatal stress is produced by
restraining pregnant rats three times a day, from
gestation day 14 (GD14) to GD21 (Koehl et al., 2002),
resulting in elevation of the dam’s corticosterone
level (Barbazanges et al., 1996). Postnatal stress is
produced by handling pups daily, from postnatal
day 1 (P1) to P21 and keeping them separated from
the mother for 15 min each time. Corticosteroid level
would be elevated in the lactating dam and secreted
into her milk and thereby would pass to the pup
(Barbazanges et al., 1996). Prenatal stress was shown
to reduce type I (mineralocorticoid) and type II
(glucocorticoid) corticosteroid receptors in hippo-
campus at P21 and P90 (Maccari et al., 1995), and
alter the pattern of daily corticosterone secretion
(Koehl et al., 1997; 1999).

Prenatally stressed rats were more rapidly sensi-
tized to amphetamine (Henry et al, 1995) and
nicotine (Koehl ef al., 2000) in adulthood. These rats
also self-administered amphetamine at a higher rate
(Deminiere ef al., 1992). In the nucleus accumbens of
these rats both dopamine level (Piazza et al., 1991)
and D, receptor density were increased, while D;

receptor density was decreased in both the shell and
core of the accumbens (Henry et al., 1995).

In summary, there is an overwhelming amount of
data indicating that early stresses in life can have life-
long consequences, relating to functioning of the
HPA axis, behavioral responses to stressful situa-
tions, vulnerability to substance abuse, and identifi-
able changes in brain that link to the behavioral
patterning.

ESTROGEN AND BRAIN VULNERABILITY

Here, estrogen is contrasted with corticosteroids by
assessing the capacity of estrogen to be neuropro-
tective—an effect that is apparently partly depen-
dent on its endocrine status and partly
independent of it (Garcia-Segura ef al., 2001;
Azcoitia et al., 2002). Simply by virtue of the C3-
hydroxy moiety on the A ring, estrogen is imbued
with antioxidant properties (Behl and Holsboer,
1999). By binding to estrogen receptors (ERs) in
membranes, estrogens also initiate 2nd messenger
cascades that tend to be neuroprotective in both
glia and neurons. Also, by action at ERs in the
nucleus of cells, estrogens promote synthesis of a
variety of factors that tend to impede apoptotic
processes. Finally, estrogens are actually syn-
thesized by brain cells, demonstrating their role
as neurosteroids. These multi-mechanistic pro-
cesses evoked by estrogens lend credence to the
postulate that estrogens are intricately involved in
neuronal protection, particularly after damaging or
cellularly stressful events.

It is now evident that estrogens protect neurons
from cell death in vitro, following serum- or growth
factor-deprivation (Chowen et al., 1992), anoxia
(Zaulyanov et al., 1999), excitotoxicity (Singer et al.,
1996) or oxidative damage (Regan and Guo, 1997).
In vivo, estrogens are neuroprotective in forebrain
ischemia after middle cerebral artery occlusion in
rats (Simpkins et al., 1997).

Neurodegenerative insults promote neuronal
formation of aromatase, a key enzyme in estrogen
biosynthesis (Garcia-Segura ef al., 1999a,b). Also, ER
number is increased after focal ischemia.

Some of the neuroprotection afforded by estrogens
is mediated by estrogen action on neuronal ERs, and
this effect is prevented by antagonists of ERs
(Chowen et al., 1992), particularly estrogen receptor
alpha (Duetfias et al., 1996; Gollapudi and Oblinger,
1999a). In neurons, estrogens promote formation of
the antiapoptotic factor Bcl-2 (Singer et al., 1998), and
Bcl-XL (Gollapudi and Oblinger, 1999a), while
inhibiting expression of the pro-apoptotic factor
Bad (Gollapudi and Oblinger, 1999b). In glia,
estrogens inhibit activation of NF-kappa B and
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thereby attenuate the inflammatory response to
insults (Dodel et al., 1999). Simultaneously, estrogens
enhance expression of ApoE and insulin-like
growth factor-I (IGF-I), which are associated with
repair processes (Stone et al., 1997; Garcia-Segura
et al., 2000).

Non-endocrine effects of hormones can influence
both neurons and glia, acting as stressors (e.g.
glucocorticoids) or neuroprotectants (e.g. estradiol).
Exposure in ontogeny can have life-long alterations
in behavioral functions and reactions and even in the
vulnerability to substance abuse. The lesson is that
endogenous substances are multi-factorial in their
effects, and even non-chemical challenges like stress
can alter the endogenous milieu to modify neuronal
balance and exert long-lived effects that compromise
cellular interplay and alter person’s reactions to life
events.

SUBSTANCE ABUSE AND DEPRESSIVE
SYMPTOMATOLOGY

The introductory and novel theme attending drugs
of abuse is that their depressive symptomatology,
particularly during the withdrawal phase, is
phenomenonologically similar to the mood state
attending clinical depression and schizophrenia
(Markou and Kenny, 2002). This is a usual feature
during withdrawal from psychostimulants (Gawin
and Kleber, 1986, Waddington et al., 1990), opiates
(Haertzen and Hooks, 1969; Henningfield et al.,
1987), ethanol (Jaffe, 1990; Edwards, 1990), and
nicotine (West et al., 1984; West and Gossop, 1994).
Accordingly, if the neurobiological substrate is
common for depression and the depressive mood
during drug withdrawal, then it might be useful to
use these animal models to explore the neural basis
of depression and to screen for antidepressants.

Antidepressants Reduce Cocaine Use by Cocaine
Abusers .'

It is noteworthy that classical antidepressants appear
to be useful in treating drug dependence. In
depressed cocaine users, desmethylimipramine
reduced cocaine use by 90%; in non-depressed
users, by 50% (Ziedonis and Kosten, 1991). Imi-
pramine, although less efficacious than desmethyl-
imipramine, was also beneficial (Nunes et al., 1995).

Schizophrenics Prefer Mood Enhancing Drugs
Over Mood Depressants

Treated and untreated schizophrenics prefer psy-
chostimulants over sedating drugs (Schneier and
Siris, 1987). Reasons for this may be related to the

ability of psychostimulants to ameliorate adverse
effects of schizophrenia. This relates to mood
depression (Schneier and Siris, 1987; Robinson et al.,
1991), cognitive deficits (Cesarec and Nyman, 1985;
Krystal et al, 1999), and negative symptoms of
schizophrenia (Khantzian, 1985; 1997; Krystal et al.,
1999). It is notable that clozapine reduces drug abuse,
including psychostimulant abuse, in >85% of
schizophrenics, with the effect often persisting for
months (Zimmet ef al., 2000).

Nicotine Dependence is Prevalent in
Schizophrenics

There is a two- to three-fold higher incidence of
smoking among schizophrenics, and heavy smoking
(>30 cigarettes per day) is usual (Masterson and
O’Shea, 1984; Olincy et al., 1997). More than 90% of
schizophrenics smoke vs. 25-30% of the general
population (Masterson and O’Shea, 1984; Diwan
et al., 1998). Postulated reasons for this relate to
nicotine’s transiently normalizing auditory gating
deficits (Freedman ef al, 1997) and improving
prepulse inhibition of a startle response (Geyer and
Braff, 1987).

Antidepressants (e.g. bupropion) were advan-
tageous in reducing cigarette use and in reducing
the relapse to smoking after cessation (Hurt et al.,
1997; Jorenby et al., 1999). Clozapine similarly
reduced smoking in schizophrenics by 25-30%
(George et al., 1995; Marcus and Snyder, 1995).

Mesolimbic Dopamine and Serotonin as Neural
Substrates of Drug Reward

Many studies over the past one or two decades have
established the extraneuronal (i.e. synaptic) dopa-
mine is an essential mediator of reward including the
rewards or in-part euphoric sensation of drugs of
abuse. During cocaine withdrawal extraneuronal
dopamine level is reduced (Weiss et al., 1992), as well
as 5-HT level (Parsons ef al., 1995). The changes in
mesolimbic dopamine during nicotine withdrawal
(and withdrawal from psychostimulants) are similar
to that during cocaine withdrawal (Carboni et al.,
2000). The selective 5-HT transport inhibitors
fluoxetine and paroxetine, in combination with a
5-HT;a receptor antagonist, rapidly reversed the
threshold elevation associated with amphetamine or
nicotine withdrawal (Harrison et al., 2001).

Therapeutic Potential for Antidepressants as
Adjuncts During Drug Withdrawal

The above studies demonstrate many of the
commonalities between clinical depression and
the depressed mood during drug withdrawal.
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Furthermore, there is clear demonstration that
classical antidepressants are also beneficial in
relieving the depressive signs and thereby diminish-
ing symptoms attending withdrawal from drugs of
abuse. Neural substrates and therefore neural
mechanisms underlying these phenomena may be
similar or identical at least in part. Additional studies
may lead to widespread use of antidepressants as
adjuncts during withdrawal from drug abuse.

MODELS OF HYPER/HYPOACTIVITY AND
TREATMENT IMPLICATIONS

Destruction of DA neurons in newborn rats through
intracisternal or intracerebroventricular microinjec-
tion of the catecholamine neurotoxin, 6-hydroxy-
dopamine (6-OHDA), produces behavioral
alterations in the adult animal characterized by:
(a) a hyperactive syndrome observed over several
types of tests and parameters (Luthman ef al., 1989;
Archer and Fredriksson, 1992), (b) some hypoactivity
in tests demanding exploratory -investigatory beha-
vior (Archer et al., 1990), (c) deficits in instrumental
learning acquisitive performance (Archer ef al., 1988;
Luthman et al., 1997), (d) altered responding to low
doses of psychostimulant compounds that reverse
the hyperactivity transiently (Luthman et al., 1989),
(e) altered responding to 5-hydroxytryptamine
antagonist ligands which also reversed transiently
the hyperactive state (Luthman et al., 1991). In
general, (f) the severity of the behavioral alterations
were associated a more severe depletion of DA
(Luthman et al., 1997). Also, (g) the more severe the
depletion of DA and degree of hyperactivity, the
greater the regional increase in 5-HT concentrations
(Archer et al., 2002). Archer et al. (2002) found that the
selective DA reuptake inhibitors, amphonelic acid
and GBR 12909, injected before 6-OHDA, blocked
completely both the behavioral alterations and
neurochemical changes. A “Drug effect quotient”
was derived to examine more closely the acute
effects of doses of D-amphetamine: for example, it
was indicated that the hyperactive Sal-OHDA
rats injected with the low (0.25mg/kg) dose of
D-amphetamine showed a pronounced reduction of
motor activity (in particular rearing, 99% reduction,
and lesser so locomotion, 90% reduction) whereas
the “intact” groups [Sal-Veh, GBR-Veh and GBR-6-
OHDA] all showed marked increases (locomotion:
3.50-5.60-fold increases during the 1st 12-min
period; rearing: 2.40-13.00-fold increases). The
differential responses of the hyperactive 6<OHDA
and “intact” groups to the higher (1.0mg/kg) dose
of D-amphetamine also bear consideration (Archer
et al., 2002).

ONTOGENETIC EFFECTS OF SPECIFIC DRUGS
OF ABUSE: ALCOHOL, CANNABINOIDS, AND
OPIATES

With the above framework relating to general
aspects of substances of abuse, we now move to the
neurotertological aspects of some of the most
common substances of abuse, namely alcohol,
cannabinoids, and opiates.

ALCOHOL

At the start of this millennium the mechanisms
underlying neuronal deficits in the fetal alcohol
syndrome—first described nearly 30 years ago
(Jones et al., 1973; Jones and Smith, 1975)—were
only starting to be understood. In a series of studies
described in this edition by Olney et al. (2002), his
group found that the window of selective vulner-
ability of neurons to undergo an apoptotic
physiological cell death (PCD) coincides with the
period of synaptogenesis known as the brain
growth spurt (Dikranian et al., 2001a; Ikonomidou
et al., 2001). Moreover, ethanol was shown to exert
its fetotoxic effects predominately in this period,
both (1) by blocking N-methyl-D-aspartate (NMDA)
glutamate receptors and (2) by an agonist action at
gamma y-aminobutyric acid-A (GABA,) receptors
(Ikonomidou et al., 1999; 2000b). Specific cell groups
are most susceptible to the deleterious effects of
ethanol and related drugs during this period:
layer II non-pyramidal and layers IV and V
pyramidal neurons in the cingulate cortex, frontal
cortex, parietal cortex, temporal cortex, occipital
cortex, hippocampus, subiculum, cerebellum, thala-
mus, hypothalamus, amygdala and caudate
nucleus. Different of these cell groups become
sensitive (susceptible) at different phases of the
brain growth spurt. Whereas only about 1% of a
neuronal population undergoes apoptotic neurode-
generation after migrating to its final destination,
up to 30% of the neurons become apoptotic after
NMDA receptor block or GABA, receptor acti-
vation during the brain growth spurt (Ikonomidou
et al., 1999; 2000b).

DEVELOPMENTAL STAGES OF ETHANOL
NEUROTOXICITY

In the fetal rat exposed to ethanol between GD6 and
GD11, there is increased neural crest cell death and
neural tube defects that may result in anencephaly,
hydrocephaly, and craniofacial malformation
(Webster et al., 1983; Kotch and Sulik, 1992).
Between GD11 and GD21, ethanol is toxic to radial
glia, resulting in neural and astroglia deficits, and
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additional abnormal cell migration and neuronal cell
loss (Miller, 1992; 1995; Gressens et al., 1992). From
GD21 to P30, ethanol produces alterations in
astroglial development, increased natural cell death
and cell necrosis, alterations in neural adhesion
molecules (NCAMs), and impaired cerebellar
development.

MECHANISMS OF PERINATAL ETHANOL
NEUROTOXICITY

Ethanol is preferentially toxic to different groups of
neurons and glia, according to the stage of
development at the time of ethanol exposure, and
by a variety of mechanisms as described below and
in the paper by Guerri (2002).

Attenuation of Neurotrophin Actions

When developing rat brain is exposed to ethanol,
there is a reduction in brain-derived neurotrophic
factor (BDNF) as well as its receptor TrkB and
intracellular signaling pathways (MAPK/ERK and
PI-3-K/ Akt pathways) (Guerri et al., 2001).

Impairment of Astroglia Cell Development

During development and in embryogenesis, ethanol
impairs radial glia cell development, their pro-
duction of glial fibrillary acidic protein (GFAP)
(Vallés et al., 1996), and release of nerve growth factor
(Vallés et al., 1994; Luo and Miller, 1999). Ethanol also
impairs astroglial proliferation and maturation (see
Guerri and Renau-Piqueras, 1997).

Reduction in Cell Adhesion Molecules (CAMs)

During the period of synaptogenesis ethanol
disrupts cell-cell adhesion in cell cultures
(Ramanathan et al., 1996) and the expression pattern
of neuronal CAMs (NCAMs), increasing the poly-
sialyllated (PSA-NCAM) form (Mifiana et al., 2000).

Ethanol Promotes Free Radical Formation

As in the adult, ethanol produces oxidative stress
and depletion of antioxidant defenses, particularly
reduced glutathione (Lieber, 1988). This effect occurs
during synaptogenesis in neural crest cells (Chen
and Sulik, 1996) and in cultured astrocytes (Montoliu
et al., 1995).

Ethanol Reduces Retinoic Acid Levels

Ethanol in high amount reduces the amount of
retinoic acid in neural cells (Duester et al., 1996).

As retinoic acid is an important regulator of Hox
gene expression (Ross et al., 2000), it is significant that
ethanol suppresses expression of the homeobox gene
msx2 in mouse embryos (Rifas et al., 1997)—although
there is some question on this point (Cartwright
et al., 1998).

Ethanol Impairs 5-HT Neurodevelopment

At GD21, alcohol has neuroteratological effects on
serotoninergic raphe and other midline nuclei in
brain (Zhou et al., 2002). In rats exposed prenatally to
ethanol, both dorsal raphe and medial raphe nuclei
have reduced numbers of perikarya (Sari et al., 2001;
Zhou et al., 2001), and there is a relative denervation
of periventricular brain regions by non-varicose
5-HT axonal fibers, as determined by 5-HT content,
5-HT immunoreactivity, 5-HTqa receptor number,
and 5-HT transport number (Druse et al., 1991; Maier
et al., 1996; Zafar et al., 2000; Zhou et al., 2002). This
effect occurs prior to widespread expression of
NMDA and GABA, receptors in brain at GD14-
GD15 (Poulter et al., 1993; Monyer et al., 1994).
Evidently, there are multiple mechanisms by
which ethanol exerts its toxicological effects in
ontogeny.

As discussed in the paper by Naranjo et al. (2002),
alcohol preference and alcohol dependence are
closely linked to 5-HT neuronal dysfunction. The
5-HT synthesis inhibitor p-chlorophenylalanine
(PCPA) reduces alcohol preference in rats (Myers
and Veale, 1968). In alcohol-preferring mice or rats
there is reduced 5-HT innervation and reduced 5-HT
and 5-HIAA turnover in several brain regions
(Morinan, 1987; Gongwer et al., 1989; Zhou et al.,
1991). In alcohol-preferring rats as well as in chronic
alcoholics (Halliday et al., 1993), alcohol produces
degeneration of 5-HT neurons and axonal projec-
tions (Halliday et al., 1995). In C57Bl mice treated
perinatally with ethanol (20-25% of calories), there
was a loss of 5-HT immunoreactive (ir) perikarya in
the dorsal and medial raphe nuclei, and in the
number of 5-HT-ir axons in the medial forebrain
bundle (Sari et al., 2001; Zhou et al., 2001). Also,
destruction of 5-HT neurons in Sprague—Dawley
rats which normally have low alcohol preference,
increased voluntary ethanol consumption (Wang
et al., 1996). This body of evidence provides a clear
link between ethanol consumption and 5-HT
dysfunction.

Ethanol and DA in Brain

Acutely, ethanol dose-dependently increases the
firing rate of DA fibers deriving from the ventral
tegmental nucleus (Brodie and Appel, 2000) and
enhances DA release in the nucleus accumbens of rats
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(Olive et al., 2000). Increased ethanol evoked DA
release in nucleus accumbens appears to be a
predictor of ethanol preference in rats (Katner and
Weiss, 2001); and DA D, receptor number in brain
was inversely correlated with ethanol preference and
intake (Thanos et al., 2001). However, there is debate
as to whether alterations in DA neuronal markers are
specific to alcohol, or rather, a general measure of the
reward system per se.

Ethanol Alters Development of GABA-glutamate
Systems

During brain development, ethanol reduces the
number of functional NMDA receptors in neocortex
and hippocampus (Vallés ef al., 1995; Diaz-Granados
et al., 1997), and during the growth spurt ethanol
promotes apoptosis (above).

CLINICAL IMPLICATIONS OF PERINATAL
ETHANOL

Ethanol Preference in Alcoholics

There have been many prospective studies in rodents
and many retrospective studies in humans, seeking
to determine a neurochemical basis for (1) alcohol-
preference or (2) the alcohol dependency state. These
studies have been reviewed in the paper by Naranjo
et al. (2002). Because of frequent conflicting findings
in humans, the reader is directed to the Naranjo
paper to delve through the complexities and
confounding aspects of specific studies. However,
the following findings seem to be unequivocal.
Children of alcoholics had a greater 5-HT uptake
capacity by platelets (Rausch et al., 1991), reduced
CSF level of 5-HIAA (Rosenthal et al., 1980), and
reduced cortisol- or prolactin-response to fenflura-
mine (Schuckit ef al., 1987a,b). In Type II alcoholics
(early onset, rapid and severe course of alcoholism)
there is up-regulated 5-HT, receptors in brain
(Virkkunen et al., 1994), increased platelet 5-HT
uptake (Javors et al., 2000), and reduced cerebral
5-HIAA content (Fils-Aime ef al., 1996). There are
ongoing studies to determine if changes in 5-HT
function precede or follow ethanol abuse.

Fetal Alcohol Spectrum Disorders

Ethanol produces a spectrum of neuropathological /
behavioral deficits in humans, including hyperacti-
vity, learning deficits, and psychiatric disorders in
adulthood. The term fetal alcohol spectrum disorder
(FASD) was recently introduced to refer to the
spectrum of neuropathological alterations produced
by ethanol in humans (Barr and Streissguth, 2001).
In human adults, the excitotoxic effects of ethanol, as

antagonist at NMDA receptors, is counteracted by its
inhibitory action of GABA, receptors (Olney et al.,
1991). In human perinates, the apoptotic effect of
ethanol at NMDA receptors is enhanced by its
inhibitory effect at GABA, receptors (Ikonomidou
et al., 2000b). The perinatal cortex and specific
subcortical regions are uniquely sensitive to neuro-
nal apoptotic effects of ethanol, which account
for subsequent learning deficits, behavioral dis-
orders, and psychiatric states. Nearly three of four
FASD patients manifest major depression, psychosis
or other psychiatric condition in adulthood (Famy
et al., 1998).

General Anesthesia in Children

As general anesthesia typically involves use of
NMDA receptor antagonists (e.g. ketamine, nitrous
oxide) and/or GABA, agonists (e.g. barbiturates,
benzodiazepines), there is high risk for induction of
neuronal apoptosis in children, particularly if
anesthesia is maintained for hours. In rats with
surgical plane anesthesia, maintained for 6h with
combined isoflurane—midazolam-nitrous oxide on
postnatal day 7, there was notable apoptosis in
cortical and subcortical regions of brain; and this was
associated with later and seemingly permanent
learning deficits (Hartman et al., 2001; Jevtovic-
Todorovic et al., 2001).

Perinatal Use of Anti-seizure Drugs

As commonly used anti-seizure drugs inhibit
neuronal activity by blocking sodium channels,
they share in the net effect (i.e. neuronal inhibition)
produced by NMDA antagonists and GABA,
agonists in perinates. Phenytoin and valproate have
been shown to produce neuronal apoptosis in the
perinate-akin to the ethanol effect (Dikranian et al.,
2001b; Ikonomidou et al., 2000a,¢). Use of anti-seizure
drugs by pregnant mothers or children, runs the risk
of induction of neuronal apoptosis in the brain of the
fetus or child, respectively. Learning deficits are
reported for children exposed to these drugs in utero
or after birth (Dessens et al., 2000).

Perinatal Exposure to Drugs of Abuse

When pregnant women abuse NMDA blockers (e.g.
ketamine, phencyclidine, nitrous oxide) or GABA-
mimetics (e.g. benzodiazepines, barbiturates), there
is increased risk of induction of neuronal apoptosis
in the fetus—an action analogous to that of ethanol
(Ikonomidou ef al., 1999).
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Psychiatric Disorders

Because 5-HT has a regulatory role in cell division,
differentiation, migration, growth and synaptogene-
sis (Lauder, 1990; Whitaker-Azmitia et al., 1996),
development and function of multiple neuronal
systems can be altered including the somatosensory
map (Blue ef al., 1991; Persico et al., 2001). Because
5-HT neurons have a modulatory role in mood
regulation, learning and memory, eating, tempera-
ture-regulation, sleep and circadian rhythm, repro-
ductive processes and motor activities, a variety of
additional life-long manifestations are possible.
These relate to anxiety disorders, eating disorders,
insomnia, mood and personality disorders including
obsessive compulsive disorder (see Coccaro and
Murphy, 1990).

CANNABINOIDS

Perinatal treatment with cannabinoids produces
alterations in development not only of the
endocannabinoid system per se (Ramos et al., 2002),
but in opioid and monoaminergic systems as well
(Perez-Rosado et al., 2002). Although changes in
markers for these neurochemical systems are often
small in magnitude, numerous behavioral alterations
are observed in adulthood.

Development of the Endocannabinoid System in
Brain

Cannabinoid CB; receptors and mRNA levels are
definable by GD14 in rats, coincident with the onset
of phenotypic expression of the endocannabinoids
anandamide and 2-arachidonylglycerol (2-AG) (see
Insel, 1995). CB; receptors are associated with
commisural tracts such as the corpus callosum,
stria terminalis, and anterior commissure and are
thought to be localized to sprouting axons and/or
astrocytes and oligodendroglia (see Shivachar et al.,
1996). As the pattern of distribution of CB; receptors
is dramatically different at this time than in
adulthood (Mailleux and Vanderhaeghen, 1992a,b),
itis hypothesized that endocannabinoids may have a
nurturing or neurotrophic role prenatally, apart from
its later modulatory role.

Neuroteratological Effect of Cannabinoids on the
Endocannabinoid System in Brain

When anandamide is administered to pregnant rats,
the offspring in adulthood display reduced open
field activity, catalepsy, hypothermia, hypoalgesia
and tolerance to cannabinoid challenge (Fride and
Mechoulam, 1996a,b). Perinatal treatment with the

CB; selective agonist HU-210 produced an elevation
in the adult basal level of luteinizing hormone (LH).
A single low perinatal dose of HU-210 (1 pg/kg)
sensitized to a corticosterone response while a single
high perinatal dose of HU-210 (20 pg/kg) reduced
the adult corticosterone level in offspring in
adulthood (Del Arco et al., 2000).

Neuroteratological Effect of Cannabinoids on the
Opioid System in Brain

In rats exposed prenatally to delta-9-tetrahydrocan-
nabinol (A’-THC), there was a sexually dimorphic
effect on opiod systems in brain. In the arcuate
nucleus, cerebral cortex and habenula, pro-opiome-
lanocortin (POMC) mRNA levels were slightly
elevated in females and slightly reduced in males
at GD21, following daily oral administration of
A°-THC (5mg/kg/day) from GD5. In females only,
prodynorphin mRNA was slightly increased in the
cerebral cortex, hippocampus and paraventricular
nucleus of the hypothalamus. When assessments
were made three days earlier, at GD18, the only
significant change was a 6~10% elevation in POMC
mRNA in arcuate nucleus and cerebral cortex in
males and females combined (Perez-Rosado
et al., 2002).

In similarly treated rats that were behaviorally
tested in adulthood, males copulated less frequently
(Dalterio and Barke, 1979). Males also were less
active in the open field (Navarro et al., 1994), had
impaired learning (Dalterio, 1986), and had a
reduced stress-response (Mokler et al., 1987), with
altered nociceptive response (Vela et al., 1995).
Female offspring self-administered more morphine
and had increased mu receptor binding and
decreased proenkephalin mRNA in brain regions
associated with drug-seeking behavior (Corchero
et al., 1998; Vela et al., 1998).

Neuroteratological Effect of Cannabinoids on
Neurochemistry of Brain

In rats perinatally exposed to A>~THC for GD5, there
was an abrupt and marked decrease in tyrosine
hydroxylase (T-OH) mRNA, T-OH activity, and
T-OH-ir in brain (Bonnin et al, 1996), but this
alteration was absent in adulthood (Rodriguez de
Fonseca et al., 1991). However, the effects of DA
agonists or amphetamine were altered in these rats
(Garcia-Gil et al., 1996; 1998).

Perinatal A°-THC treatment reduced 5-HT content
of the diencephalon of male perinates (Molina-
Holgado et al., 1996), and in adulthood the reduction
in 5-HT with elevation in 5-HIAA extended to
other brain areas (Molina-Holgado et al., 1997).
Although perinatal cannabinoids did not alter GABA
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content and glutamic acid decarboxylase activity in
the brain of offspring in adulthood, there was a
greater behavioral response to treatment with
the GABAg receptor agonist baclofen (Garcia-Gil
et al., 1999).

Behavioral Alterations in Rats Treated Perinatally
with Cannabinoids

Endocannabinoids are associated with modulatory
effects on motor activity, antinociception, learning
and memory (Mallet and Beninger, 1996). The
seemingly small changes in the endocannabinoid
and opioid systems in brain are nonetheless
associated with demonstrable behavioral alterations
later in life. While effects on self-administration of
opiates is likely to be related to some of the above
changes in the opioid systems in brain, it is quite
evident that some other behaviors may be due, at
least in part, to perinatal effects of cannabinoids on
other neurochemical systems.

OPIATES

In a major review article, Trujillo (2002) summarizes
findings and lays hypotheses relative to mechanisms
of opiate tolerance, dependence, and sensitization.
Somewhat surprisingly, opiate tolerance for one
effect (e.g. analgesia) can develop simultaneously
with opiate sensitization to another effect (e.g.
locomotor depression). As discussed by these
authors, NMDA receptors appear to be intricately
involved in the above phenomena. By blocking long-
term potentiation (LTP) or long-term depression
(LTD), NMDA receptor antagonists interfere with
the acquisition but not the expression of opiate
effects; and interfere with adaptive responses to
opiates.

A role for NMDA receptors in the depressant
effects of opiates was indicated by MK-801-,
memantine- and LY235959-suppression of tolerance
to the locomotor depressant effect of morphine
(Tryjillo, 2002) and NMDA antagonist-suppression
of operant responding (Bespalov et al., 1999).
Involvement of NMDA receptors in the development
of opiate tolerance is indicated by MK-801 inhibition
of the development of tolerance to morphine
analgesia (Mao ef al., 1995).

A role for NMDA receptors in the development
of opiate physical dependence is evidenced by
MK-801 inhibition of the acquisition of physical
dependence on morphine (Trujillo and Akil, 1990;
1991); similarly, by an antisense oligonucleotide
against a key NMDA receptor subunit (Zhu and Ho,
1998). Finally, sensitization to opiates apparently is
also NMDA receptor-dependent, as the effect
is blocked by MK-801, CGS 19755 (Wolf and

Jeziorski, 1993; Jeziorski et al., 1994), memantine,
and LY235959 (Peterson and Trujillo, 2001; Trujillo
et al., 2001).

Opioid tolerance and physical dependence is
thought to involve a decoupling of opioid receptors
from second messenger systems, and could sequen-
tially involve protein kinase C (PKC), phospholipase
C (PLC), activation of calcium calmodulin kinase II
(CaMKII) and nitric oxide (NO) synthase, NO
production, and guanylyl cyclase.

CLINICAL IMPLICATIONS RELATING TO
OPIATES AND NMDA RECEPTORS

NMDA receptor antagonists may be useful in
reversing opiate addiction, and able to accelerate
the loss of tolerance, dependence and sensitization
during opiate detoxification. Better understanding of
second messenger systems in these phenomena may
lead to better treatment for chronic pain.

SUMMARY

These series of papers deriving from the Cerebre y
Mente meeting, on the theme Neurodevelopmental
Liabilities of Substance Abuse, illustrate how sub-
stances of abuse and even ordinarily benign
environmental situations can adversely affect neo-
nate brain development, and produce life-long
changes that potentially predispose to affective
disorders or added risks in the face of substances
of abuse. Because neural deficits can be reproducibly
achieved in animal studies, much can be gained by
educating women about substance abuse risk to the
unborn child.

CONCLUSIONS

From a scientific perspective the series of papers on
substance abuse, deriving from the Cerebro y Mente
meeting, demonstrate that much progress has
been made in understanding these mechanisms of
action in producing neuroteratology. Abstinence is
the best means for averting risk posed by substances
of abuse. However, in the situation where a meonate
must be anesthetized, there is no single anesthetic
that is free of risk. Today all anesthetics either
block NMDA receptors or enhance GABA activity—
both effects being capable of producing damage to
the developing brain. More research is needed to
develop more satisfactory anesthetics and more
studies are needed to develop drugs that can
effectively prevent adverse effects of these sub-
stances on the developing brain.
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