An important difference between our classification and others is that we:

* Expanded functional connotations of our terms,
* Adopted a more refined and systematic classification system,
* Made use of analogy and metaphor in the definitions,
* Provided explicit criteria for each category,
* Assumed a more holistic perspective of the brain's role in form perception.

For purposes of this research, we created a taxonomy of hand shapes that would

Manipulation of Objects

Using the Hand for Functional Manipulation

Procedures for Haptic Object Exploration

Table 6.1: Classification of Insect

<table>
<thead>
<tr>
<th>Class</th>
<th>Order</th>
<th>Family</th>
<th>Genus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insecta</td>
<td>Lepidoptera</td>
<td>Lasiocampidae</td>
<td>Lasiocampa</td>
</tr>
</tbody>
</table>

Insects are characterized by their three-part body: head, thorax, and abdomen. They have two pairs of wings and six legs. The diversity of insects is vast, with over 900,000 species described. These insects play crucial roles in pollination, decomposition, and pest control. Understanding insect classification helps in managing their populations in agricultural and natural environments. Table 6.1 provides a simplified classification of an insect, highlighting its class, order, family, and genus.
Structural Determinants of Hand Shaping

Object-Specific Functions

Let us first consider the object-specific functions. Examples are showning a

<table>
<thead>
<tr>
<th>Classification of Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand Shaping</td>
</tr>
</tbody>
</table>

We specifically asked subjects to list the functional context in which a

Functional Determinants of Hand Shaping

mote with picking up and putting it to make it move.

Table 8.2: Classification of Functions

Examples are sharing a
Haptic Object Exploration: A Manipulation Interface

The largest set of conditions was between the position of the object and the position of the hand. The most common feature to look at in the line of the conditions made by the manipulators is that the position of the object would determine the position of the hand. In addition, the manipulator's position was also related to the position of the object. The position of the hand was also related to the position of the object.

The discriminative function explained from the manipulators' forms did not form well on visual inspection. The discriminative function could not be used from an image of the object from a position of interest. The function would not be made from an image of the object from a position of interest. The function would not be made from an image of the object from a position of interest. The function would not be made from an image of the object from a position of interest. The function would not be made from an image of the object from a position of interest. The function would not be made from an image of the object from a position of interest.

The goal was to explore the haptic exploration of objects and their associated properties. We discovered that the exploratory process was highly related to the dimension of the object and its associated properties. We concluded that the exploratory process was highly related to the dimension of the object and its associated properties. We concluded that the exploratory process was highly related to the dimension of the object and its associated properties.
The classification system for object properties using the hand for exploration.

Hand shapes and objects in human memory.

The importance of function over structure in determining the association between hand shapes and objects. By summarizing the hand-object interface, we can develop a working system of hand-object associations. Our work on the classification of hand properties suggests that the hand conveys unique information about objects. By exploring the hand-object interface, we can develop a working system of hand-object associations. Our work on the classification of hand properties suggests that the hand conveys unique information about objects.
Table 8.1. Comparison of Effector and Sensing Procedures

<table>
<thead>
<tr>
<th>Dimension of Effector and Sensing Procedures</th>
<th>Class (6S)</th>
<th>Composition and Sensing Capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference</td>
<td>1. Pinned</td>
<td>2. Dynamic surface tension</td>
</tr>
<tr>
<td></td>
<td>2. Mechanical tension</td>
<td>3. Hydrostatic pressure</td>
</tr>
<tr>
<td></td>
<td>3. Capillary tension</td>
<td>4. Contact pressure</td>
</tr>
<tr>
<td></td>
<td>4. Heat conduction</td>
<td>5. Chemical potential</td>
</tr>
<tr>
<td></td>
<td>5. Massdiffusive potential</td>
<td>6. Vibrational potential</td>
</tr>
</tbody>
</table>

Abbreviations: 6S, Six Senses; Pinned, pinned effector; Dynamic surface tension, dynamic surface tension; Mechanical tension, mechanical tension; Hydrostatic pressure, hydrostatic pressure; Capillary tension, capillary tension; Heat conduction, heat conduction; Chemical potential, chemical potential; Massdiffusive potential, massdiffusive potential; Vibrational potential, vibrational potential.

Definition of Manipulatory Procedures

The term "manipulatory procedure" has been expanded upon in the description of the four basic manipulatory hand shapes—palm, thumb, clenched, and pinch. In order to make comparisons between different effector procedures, in the present context, we have developed a set of manipulatory procedures for the four basic hand shapes. These manipulatory procedures are used as a basis for comparing different effector procedures. In essence, we are attempting to describe the manipulatory procedures for each hand shape.

How Similar Are Manipulatory Procedures?

For the present, we are describing the four basic manipulatory hand shapes—palm, thumb, clenched, and pinch. However, pressure has been added to each hand shape in order to compare different effector procedures. In the present context, we have developed a set of manipulatory procedures for the four basic hand shapes. These manipulatory procedures are used as a basis for comparing different effector procedures. In essence, we are attempting to describe the manipulatory procedures for each hand shape.
The two key components of the CED are the sustainability and interconnection of the material discuss.

Also, it should be noted that the discussion of this material is not exhaustive, and a deeper understanding will be required.

As discussed previously, the two key components of the CED are the sustainability and interconnection of the material discuss.

Moreover, it should be noted that the discussion of this material is not exhaustive, and a deeper understanding will be required.

The first component of the CED is the sustainability aspect. This component ensures that the material is produced in an environmentally friendly manner and that the resources used are renewable.

The second component of the CED is the interconnection aspect. This component ensures that the material is integrated into the larger system and that it can work together with other components to achieve the desired outcome.

In addition to these components, the discussion of the CED should also include a consideration of the potential impact on the environment and society.

Role of Perception in Exploration and Manipulation Processes

We have distinguished between exploration and manipulation processes, where the first is driven by the desire to understand and the second is driven by the desire to act.

However, it is important to note that these processes are not mutually exclusive, and there is often an overlap between them.

For example, when exploring a new environment, the agent may first need to understand the environment before it can begin manipulating it. Conversely, when manipulating an object, the agent may first need to explore the object to understand its properties and characteristics.

In conclusion, the exploration and manipulation processes are essential for effective and efficient operation in complex and uncertain environments.

Moreover, it should be noted that the discussion of these processes is not exhaustive, and a deeper understanding will be required.

As discussed previously, the exploration and manipulation processes are essential for effective and efficient operation in complex and uncertain environments.

However, it is important to note that these processes are not mutually exclusive, and there is often an overlap between them.

For example, when exploring a new environment, the agent may first need to understand the environment before it can begin manipulating it. Conversely, when manipulating an object, the agent may first need to explore the object to understand its properties and characteristics.

In addition to these processes, the discussion of their potential impact on the environment and society should also be considered.

As a final note, it should be emphasized that the exploration and manipulation processes are not static, and they evolve over time as the agent gains more experience and knowledge.
The assessment of weight uses a procedure that is essentially the same as merely holding an object to maintain it in space. For purposes of comparison, the table combines the prehensile configurations and postures of the two classes of objects. In each case, the contact point is determined by the location of the force in the contact area. Although there are some differences in specific hand shapes and postures used for general maintenance purposes and certain exploratory procedures, the two classes of objects are relatively easy to distinguish by using the recognition and postural cues provided by the configuration of the contact area. In contrast, the use of the object in maintenance and exploratory procedures tends to be more similar, although these cases are more similar than others. The difference is that the task is more transient, this can be ignored, and the posture is not as critical.
REFERENCES

