## **DIY Optical Diffraction Experiment**



Queen's University Student Chapter

What you'll need: 2 pencils, scotch tape, a candle, and a camera (optional, to record your results!)

What you'll do:

- 1. Tape two pencils together at each end, forming a narrow gap (around 1 millimeter) between them.
- 2. With an adult's help, light the candle and stand back about a meter.
- 3. Holding up the pencils close to your eye, look at the candlelight through the gap. You should see the light from the candle 'smear out' into a line that is perpendicular to the pencils physicists call this line a *diffraction pattern*!
- 4. Try rotating the pencils to different angles, and see how the diffraction pattern rotates along with the pencils. Squeeze the pencils together with your hands to adjust the width of the gap, and see how the pattern changes.
- 5. Optional: Hold up the pencils to the lens of your camera, and take pictures of the diffraction patterns you see! *You may need to clean the lens with a lens cloth, as any smudges on the lens can introduce their own diffraction effects.*



The candle viewed normally, then viewed through vertical, diagonal, and horizontal slits.

## Go further:

Try to guess what would happen if you viewed the candle through a tiny circular hole instead of a narrow gap. How would the diffraction pattern change? Try to figure out how you could test this hypothesis!

## What's going on:

Normally, we think about light as travelling in a straight line. However, when light passes very close to an obstacle like a slit, it will *diffract*! There are two ways of thinking about this, depending on whether you imagine light as a *wave* or as a *particle*.

| Classical "Wave"               | Quantum "Particle"              |
|--------------------------------|---------------------------------|
| Description                    | Description                     |
| Think of how waves move        | Quantum mechanics tells         |
| in water – if you drop         | us that the <i>position</i> and |
| something onto the             | <i>momentum</i> of a particle   |
| surface at a particular        | are linked in a very            |
| point, the waves will          | special way: if one of          |
| move outward in a circle.      | them is known very              |
|                                | precisely, the other one        |
| Light waves behave in a        | must be somewhat                |
| similar way! Each point on     | uncertain. This is called       |
| the wave acts as a source      | the uncertainty principle.      |
| of new circular wavelets.      |                                 |
| This is called <b>Huygen's</b> | By forcing the light to         |
| principle.                     | pass through a thin slit,       |
|                                | we are forcing it into a        |
| By only allowing light to      | very precise position. This     |
| pass through a narrow          | introduces some                 |
| slit, we are creating a        | uncertainty to the              |
| 'point source'. The light      | momentum, causing it to         |
| from this source then          | spread out in many              |
| moves outwards from the        | directions!                     |
| point in a circle, causing     |                                 |
| the light to spread out.       |                                 |

