School of Graduate Studies

Queen's University
Search Type

School of

Graduate Studies

School of

Graduate Studies

site header


Biomedical Engineering

Program Overview

Biomedical engineering involves the application of engineering principles to understand, modify or control biological systems with the objective of generating solutions to health-related problems. This area is diverse and multidisciplinary, bringing in concepts from chemistry, mechanics, biochemistry, cell biology and physiology. This collaborative program links the graduate programs in Chemical, Electrical and Mechanical Engineering and provides shared learning experiences with interdisciplinary content, bringing students from a variety of backgrounds together to learn about research methodology and professional practice in the field of Biomedical Engineering.

See "Why Grad Studies" videos by Queen's Engineering faculty and students

Program Contact

Contact the home department for more details
Chemical Engineering
Dr Lindsay Fitzpatrick -
Electrical & Computer Engineering
Dr Evelyn Morin -
Mechanical & Materials Engineering
Dr Claire Davies -



Our students have the opportunity to work in collaboration with researchers in many other Departments such as: Biochemistry, Cell Biology and Anatomy, Physiology, and Mechanical Engineering. In addition, many projects involve both cardiovascular and orthopaedic surgeons. Much of the research is done within the Human Mobility Research Centre at Kingston General Hospital. Other research takes place at Hotel Dieu Hospital in Kingston and at the Schools of Kinesiology and Health Studies at Queen’s.

Career paths – employment opportunities

• Academia • The pharmaceutical industry • The biomedical device industry • Health care support (e.g. Health Canada)

Degrees Offered/Method of Completion

Degrees Offered

M.A.Sc. (with specialisation in Biomedical Engineering): 2 years

Ph.D. (with specialisation in Biomedical Engineering): 4 years

Method of Completion

All students must:

  • Satisfy the coursework, thesis and other requirements of member program as well as:
  • Enroll in the “Topics in Biomedical Engineering” graduate course (CBME 801) focusing on research methodology, experimental design, development of journal articles and research proposals. This course would count toward the course work requirement of your home program.
  • Participate in the Biomedical Engineering Seminar series, in place of their home department seminar series.
  • Undertake a thesis project in one or more of the areas of research expertise listed.
Fields of study and Supervisors

The collaborative program provides opportunities for career development, as well as invaluable intra and interdisciplinary research and learning. Areas of research interest include:

Biomechanics and prosthetics - The biomechanics and prosthetics group focuses on the study of: (i) whole body and limb biomechanics during daily living and before/after surgical treatment and (ii) implants and prosthetics (e.g. total joint replacements, lower limb amputee devices) for the industrialized world as well as novel approaches for applications in the developing world.

Researchers:  Tim Bryant, Claire Davies, Kevin Deluzio, Genevieve Dumas, Il-Yong Kim, Yongjun Lai, Qingguo Li, Rick Sellens

Biomaterials - This group focuses on the (i) development of natural and synthetic materials used to facilitate the repair of damaged or diseased tissues and organs, (ii) materials to be used in conjunction with biomedical tools and devices, and (iii) understanding and modeling of tissue function. Specific examples include drug delivery devices, cell encapsulation devices, tissue engineering scaffolding materials and synthetic synovial fluid as well as research on the function of connective tissues (e.g. cartilage, bone).

Researchers:  Brian Amsden, Lindsay Fitzpatrick, Laura Wells

Tissue Engineering and Regenerative Medicine - This group focuses on the development of new therapeutic approaches to advanced healthcare based on improving or replacing the biological function of damaged or diseased tissues and organs. Research in this area is conducted on the development of (i) laboratory grown functional replacement tissues and (ii) cell encapsulation devices. Specific applications include the development of articular cartilage, ligament blood vessels, intervertebral disc, adipose tissue and implantable insulin producing devices.

Researchers:  Brian Amsden, Lindsay Fitzpatrick, Laura Wells

Medical Imaging - This group comprises expertise in the areas of robotics, computer vision, modeling and human performance monitoring. The research on robotic control is focused on the application of control systems  in telerobotics, haptics and virtual environments with the integration of processed biological signals in the control structure. Research into computer vision is centered on pose determination and 3-D tracking, human gesture recognition and medical imaging. Discrete event systems techniques are being used in modeling emergency response to epidemiological outbreaks.

Researchers:  Michael Greenspan, Keyvan Hashtrudi-Zaad, Michael Korenberg, Evelyn Morin, Karen Rudie

Funding, Academic Prerequisites & Deadline

Funding Information

Students enrolled in the collaborative program will be considered for funding support through their home departmental program. We encourage all students to apply for both internal and external awards including OGS, NSERC and CIHR scholarships. Entering graduate students who win federal government tri-council awards are automatically provided with a $5,000 (Masters) or $7,500 (PhD) top-up award by Queen’s.

Academic Prerequisites

Admission requirements for students entering the collaborative program will be consistent with those of the member department in which the student will register.

Key Dates and Deadlines

Application Deadline: as per home department