Academic Calendar 2022-2023

Search Results

CHEE 210 Thermodynamics of Energy Conversion Systems

CHEE 210  Thermodynamics of Energy Conversion Systems  Units: 3.50  

This course is an introduction to thermodynamics for chemical engineering systems analysis. The principles arising from First and Second laws of thermodynamics will be applied to the solution of mass, energy, and entropy balances for homogeneous closed and open systems. Properties of ideal gases and real fluids will be derived from Equations of State and applied in the analysis of simple flow processes. The students will compute efficiencies and coefficients of performance for energy production, conversion, and storage systems. The impacts of energy process design choices on efficiency, performance, and sustainability will be measured through exergy analysis.

Requirements: (APSC131 AND CHEE221) OR (APSC131 AND APSC132) OR (APSC131 AND APSC172) OR APSC131 OR (APSC131 AND APSC172) OR APSC132 OR (APSC131 AND MINE201) OR (APSC131 AND APSC132) OR APSC172  
Offering Term: W  
Offering Faculty: Fac of Engineering Appl Sci  

Chemical Engineering

The Chemical Engineering department is based in Dupuis Hall, which is a multi-purpose facility with extensive research laboratories, and large-and small-group teaching classrooms. Department researchers in the bioengineering and bioremediation fields also have laboratory facilities in the multi-disciplinary Biosciences complex, Nicole Hall, and in the Centre for Health Innovation at Kingston General Hospital.  We are a medium-sized department, with sufficient size to ensure a breadth of research activities, yet small enough to foster a cohesive learning environment. Research serials and books are housed in the Engineering and Science Library, and a variety of search and document delivery facilities are available on-line. Research is being conducted in the fields of materials and interfaces, bioengineering, sustainable energy sources, and data analytics, optimization and control. Facilities within the polymer and reaction engineering field include a variety of bench and pilot scale polymerization reactors (gas-phase polyolefin, solution and emulsion free-radical, living-radical and condensation polymer systems), polymer processing equipment (twin-screw extruder, Haake internal mixer), rotational and capillary rheometers, fuel cell equipment, and the biomedical research facilities include cell and tissue culture labs. The Chemical Engineering Analytical Facility (ChEAF) was established for the measurement of polymeric physical, thermal and structural properties, and is supported by the Senior Research Engineer. Physical measurements and chemical analyses are carried out using a variety of instruments such as gas chromatographs, elemental analyzer, HPLCs, gel permeation chromatographs, BET surface area analyzer, capillary hydro-dynamic fractionation submicron particle size analyzer, spectrophotometers, IR, FTIR, GC mass spectroscopy, and also by means of novel probes based in light scattering, absorption and fluorescence. Research computations are conducted using a wide range of symbolic computation, numerical analysis, statistical analysis and process simulation software.  The research laboratories are supported by two departmental laboratory technologists while the computing facilities are supported by the Faculty of Engineering and Applied Science Information Technology Group.

Chemical Engineering (CHEE)

NOTE Most courses are one term in length and are 3.0 credit units in weight; however, modules are 6-weeks in length and are 1.5 credit units in weight (as shown in the relevant course descriptions).  Not all courses are offered in every session.

Academic Programs

...400 ; CHEE 229 ; CHEE 342 ; CHEE 380 ; CHEE...Course List*; REPD; SOCY 210 ; SOCY 211 ; SOFT...