News Release - Pioneering Queen’s chemistry gets $24M boost to advance coatings that preserve metals from deteriorating

News Release - Pioneering Queen’s chemistry gets $24M boost to advance coatings that preserve metals from deteriorating

January 12, 2022


With support from the Government of Canada's New Frontiers in Research Fund, new research extending the lifespan of metals could save billions across the infrastructure, microchip, and health care industries

KINGSTON, ON - Today, the federal government committed $24 million through the New Frontiers in Research Funding to Queen’s University-led research poised to extend the lifespan of metals using unique molecular coatings that could save billions of dollars on maintenance across a number of sectors, including aerospace, automotive, cancer therapy, consumer electronics and infrastructure. The work could position Canada at the forefront of the barrier coatings industry, which has a national economic impact of $31 billion per year, and currently employs 211,000 people across the country.

“Worldwide, countries spend, on average, over three per cent of their GDP each year on corrosion maintenance,” says Cathleen Crudden, Queen’s professor, Canada Research Chair in Metal Organic Chemistry, and lead researcher on the project. “Annually, Canada spends around $66 billion across sectors. With new strategies, like the innovative coatings we are developing, we could save governments, taxpayers, and industries up to 25 per cent of this cost. We are very excited about the potential this work holds, and grateful for this significant support from the government’s New Frontiers in Research Fund: Transformation Stream.”

Together with her multidisciplinary team of international researchers and industry collaborators, Dr. Crudden is developing a fundamentally new approach for protecting metal surfaces. Building on her prior discovery that a certain class of organic molecules can form bonds with a wide range of metals, the group is exploring and developing a carbon-on-metal coating that could slow or halt corrosion and degradation caused by oxygen, changes in pH and temperature.

These coatings could prevent metals in microchips from breaking down, leading to greater longevity for computers, phones, and other devices. They could also guard against automobile rust, improve aerospace design, and even be used on a nanoscale, improving targeted chemotherapy and radiation therapy, and refining medical imaging. The technology’s potential to improve cancer care is promising, as it could enable new advances to nanomedical precision cancer treatments that could impact the health and wellbeing of one-in-two Canadians who will develop the disease in their lifetimes.

Funding for the project will come from Canada’s New Frontiers in Research Fund: Transformation Stream, which supports high-risk, high-reward interdisciplinary research, and be distributed to teams over a six-year span. Dr. Crudden’s team is one of only seven projects across Canada to be funded.

“I am beyond proud of the Canadian institutions and researchers who think outside disciplines and borders to tackle major challenges. These programs are a catalyst for amplifying new voices, insights and discoveries that will answer communities’ needs, elevate our innovation hub and shape Canada’s prosperity for years to come. Congratulations to all recipients!” says the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry.

The project will also involve collaborators from around the world, including academic and industry partners in Canada, the US, UK, Japan, Finland, and more.

“I want to congratulate Dr. Crudden and her team on being awarded this new funding, and thank the Government of Canada for supporting high-risk, high-reward research with the potential for wide-ranging impacts,” says Nancy Ross, Queen’s Vice-Principal (Research). “Not only could this project boost Canada’s position in the global high-tech sector, but it will also enhance cross-disciplinary collaborations, support early career professionals, strengthen equity, diversity, and inclusion opportunities, and expand student learning in myriad ways.”

Learn more about the project.

Media Assets

Media assets, including images of the research team and a short video explaining the impact of the research, are available via this Dropbox link.

About Queen’s University

Queen’s University has a long history of scholarship, discovery, and innovation that has shaped our collective knowledge and helped address some of the world’s most pressing concerns. Home to more than 25,000 students, the university offers a comprehensive research-intensive environment with prominent strengths in physics, cancer research, geoengineering, data analytics, surveillance studies, art conservation, and mental health research. Welcoming and supporting students from all countries and backgrounds to a vibrant, safe, and supportive community is an important part of the Queen’s experience. Diverse perspectives and a wealth of experience enrich our campus and our community. A core part of our mission is to engage our students, staff, and faculty in international learning and research, both at home and abroad.

Queen’s University is ranked first in Canada and fifth in the world in the 2021 Time Higher Education Impact Rankings. The rankings measured over 1,200 post-secondary institutions on their work to advance the United Nations’ Sustainable Development Goals (SDGs).

Media contacts

Julie Brown
Media Relations Officer

Victoria Klassen
Media Relations Officer


Follow Queen’s University on Twitter: @Queensu; @QueensuMedia; @QueensuResearch