Dr. Hom Nath Gharti

Dr. Hom Nath GhartiDigital Earth Scientist/ Assistant Professor

Email hng1@queensu.ca
Website https://digitalearthscience.com/

I have expertise in computational geophysics, geotechnical engineering, applied mathematics, and high-performance computing. I was an associate research scholar and a postdoctoral research associate in the Department of Geosciences, Princeton University, US. I received a PhD in geophysics from the University of Oslo and NORSAR, Norway, and an MSc in earthquake engineering from the University of Tokyo, Japan. I hold a B.E. in civil engineering and an I.E. in mechanical engineering both with the Distinction from the Tribhuvan University, Nepal.

Research Interests/Current Research

My research area encompasses applied mathematics and computational (geo)mechanics, including (an)elastic-gravitational wave propagation, coseismic deformation and post-earthquake relaxation, glacial isostatic adjustment, gravity/magnetic anomalies, microearthquakes; and hexahedral meshing and scientific visualization. I have (co)developed a number of software packages to solve the problems in those areas.

Professional Associations

  • American Geophysical Union (AGU)


Publications

Reviewed Articles

1. Jeong, C., Manalaysay, A., Gharti, H. N., Guan, S., and Vignola, J., 2019. Applicability of 3D spectral element method for computing close-range underwater piling noises,
Journal of Theoretical and Computational Acoustics. DOI:10.1142/S2591728519500129.

2. Gharti, H. N. and Tromp, J., 2019. Spectral-infinite-element simulations of magnetic anomalies,
Geophysical Journal International, 217, 1656-1667. DOI:10.1093/gji/ggz107.

3. Langer, L., Gharti, H. N., and Tromp, J., 2019. Impact of topography and three-dimensional heterogeneity on coseismic deformation,
Geophysical Journal International, 217, 866-878. DOI:10.1093/gji/ggz060.

4. Gharti, H. N., Langer, L., and Tromp, J., 2019. Spectral-infinite-element simulations of earthquake-induced gravity perturbations,
Geophysical Journal International, 217, 451-468. DOI:10.1093/gji/ggz028.

5. Vaaland, U. B., Gharti, H. N., and Tromp, J., 2019. Simulations of seismic wave propagation using a spectral-element method in a Lagrangian framework with logarithmic strain,
Geophysical Journal International, 216, 2148-2157. DOI:10.1093/gji/ggy546.

6. Wang, N., Li, J., Borisov, D., Gharti, H. N., Shen, Y., Zhang, W., and Savage, B., 2019. Modeling three-dimensional wave propagation in anelastic models with surface topography by the optimal strong stability preserving Runge-Kutta method,
Journal of Geophysical Research - Solid Earth, 124. DOI:10.1029/2018JB016175.

7. Gharti, H. N., Langer, L., and Tromp, J., 2019. Spectral-infinite-element simulations of coseismic and post-earthquake deformation,
Geophysical Journal International, 216, 1364-1393. DOI:10.1093/gji/ggy495.

8. Gharti, H. N., Tromp, J., and Zampini, S, 2018. Spectral-infinite-element simulations of gravity anomalies,
Geophysical Journal International, 215, 1098-1117. DOI:10.1093/gji/ggy324.

9. Lloyd, S. F., Jeong, C., Gharti, H. N., Vignola, J., and Tromp, J., 2018. Spectral-element simulations of acoustic waves induced by a moving underwater source,
Journal of Theoretical and Computational Acoustics. DOI:10.1142/S2591728518500408.

10. Paap, B., Kraaijpoel, D., Bakker, M., and Gharti, H. N., 2018. Wave propagation modelling of induced earthquakes at the Groningen gas production site,
Geophysical Journal International, 214, 1947-1960. DOI:10.1093/gji/ggy225.

11. Lecomte, I., Lubrano-Lavadera, P., Wuestefeld, A., Kaschwich, T., Albaric, J., and Gharti, H. N., 2015. Focusing in migration-based location of weak microseismicity: modelling point-spread function for resolution analyses,
SEG Technical Program Expanded Abstracts, 2491-2495. DOI:10.1190/segam2015-5813282.1.

12. Gharti, H. N., Oye, V., Komatitsch, D., and Tromp, J., 2012. Simulation of multistage excavation based on a 3D spectral-element method,
Computers & Structures, 100–101, 54–69. DOI:10.1016/j.compstruc.2012.03.005.

13. Gharti, H. N., Komatitsch, D., Oye, V., Martin, R., and Tromp, J., 2012. Application of an elastoplastic spectral- element method to 3D slope stability analysis,
International Journal for Numerical Methods in Engineering, 91, 1–26. DOI:10.1002/nme.3374.

14. Gharti, H. N.; Oye, V.; Kühn, D., and Zhao, P., 2011. Simultaneous microearthquake location and moment-tensor estimation using time-reversal imaging,
SEG Technical Program Expanded Abstracts, 30, 1632-1637. DOI:10.1190/1.3627516.

15. Gharti, H. N.; Oye, V.; Roth, M., and Kühn, D., 2010. Automated microearthquake location using envelope stacking and robust global optimization,
Geophysics, 75, MA27-MA46. DOI:10.1190/1.3432784.

16. Oye, V., Gharti, H. N., Aker, E., and Kühn, D., 2010. Moment tensor analysis and comparison of acoustic emission data with synthetic data from spectral element method,
SEG Technical Program Expanded Abstracts,29(1):2105–9. DOI:10.1190/1.3513260.

17. Kühn, D., Gharti, H. N., Oye, V., and Roth, M., 2009, Analysis of mining-induced seismicity using focal mechanism and waveform computations in heterogeneous media.
EAGE extended abstracts, Amsterdam. DOI:10.3997/2214-4609.201400028.

18. Gharti, H. N., Oye, V., and Roth, M., 2008. Travel times and waveforms of microseismic data in heterogeneous media,
SEG Tech Prog Expanded Abstracts, 27(1):1337–41. DOI:10.1190/1.3059162.
 

Other Articles

1. Gharti, H. N., Komatitsch, D., Langer, L., Martin, R., Oye, V., Tromp, J., Vaaland, U., and Yan, Z., 2017. SPECFEM 3D Geotech: an open-source, parallel and cross-platform geotechnical engineering application (Version v1.2.0),
Zenodo. DOI:10.5281/zenodo.820154.

2. Gharti, H. N., Langer, L., Roth, M., Tromp, J., Vaaland, U., and Yan, Z., 2017. MeshAssist: an open-source and cross-platform meshing assistant tool,
Zenodo. DOI:10.5281/zenodo.883448.

3. Gharti, H. N., and Tromp, J., 2017. A spectral-infinite-element solution of Poisson’s equation: an application to self gravity.
arXiv:1706.00855.

4. Gharti, H. N., Oye, V., Roth, M., and Kühn, D., 2017. Wave propagation modelling in various microearthquake environments using a spectral-element method.
arXiv:1706.05217.


Return to Faculty